These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28475401)

  • 1. Cellular identity crisis: Antiandrogen resistance by lineage plasticity.
    Tuerff D; Sissung T; Figg WD
    Cancer Biol Ther; 2017 Nov; 18(11):841-842. PubMed ID: 28475401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer.
    Mu P; Zhang Z; Benelli M; Karthaus WR; Hoover E; Chen CC; Wongvipat J; Ku SY; Gao D; Cao Z; Shah N; Adams EJ; Abida W; Watson PA; Prandi D; Huang CH; de Stanchina E; Lowe SW; Ellis L; Beltran H; Rubin MA; Goodrich DW; Demichelis F; Sawyers CL
    Science; 2017 Jan; 355(6320):84-88. PubMed ID: 28059768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance.
    Ku SY; Rosario S; Wang Y; Mu P; Seshadri M; Goodrich ZW; Goodrich MM; Labbé DP; Gomez EC; Wang J; Long HW; Xu B; Brown M; Loda M; Sawyers CL; Ellis L; Goodrich DW
    Science; 2017 Jan; 355(6320):78-83. PubMed ID: 28059767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Re: SOX2 Promotes Lineage Plasticity and Antiandrogen Resistance in TP53- and RB1-Deficient Prostate Cancer.
    Atala A
    J Urol; 2017 Aug; 198(2):259. PubMed ID: 29370655
    [No Abstract]   [Full Text] [Related]  

  • 5. Loss of Notch1 Activity Inhibits Prostate Cancer Growth and Metastasis and Sensitizes Prostate Cancer Cells to Antiandrogen Therapies.
    Rice MA; Hsu EC; Aslan M; Ghoochani A; Su A; Stoyanova T
    Mol Cancer Ther; 2019 Jul; 18(7):1230-1242. PubMed ID: 31028097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative nonsteroidal antiandrogen therapy for advanced prostate cancer that relapsed after initial maximum androgen blockade.
    Suzuki H; Okihara K; Miyake H; Fujisawa M; Miyoshi S; Matsumoto T; Fujii M; Takihana Y; Usui T; Matsuda T; Ozono S; Kumon H; Ichikawa T; Miki T;
    J Urol; 2008 Sep; 180(3):921-7. PubMed ID: 18635218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel secondary hormonal therapy in advanced prostate cancer: an update.
    Van Allen EM; Ryan CJ
    Curr Opin Urol; 2009 May; 19(3):315-21. PubMed ID: 19342958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined androgen blockade in advanced prostate cancer: looking back to move forward.
    Chodak G; Gomella L; Phung de H
    Clin Genitourin Cancer; 2007 Sep; 5(6):371-8. PubMed ID: 17956709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lineage plasticity-mediated therapy resistance in prostate cancer.
    Blee AM; Huang H
    Asian J Androl; 2019; 21(3):241-248. PubMed ID: 29900883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re: Rb1 and Trp53 Cooperate to Suppress Prostate Cancer Lineage Plasticity, Metastasis, and Antiandrogen Resistance.
    Atala A
    J Urol; 2017 Jul; 198(1):102-104. PubMed ID: 28618669
    [No Abstract]   [Full Text] [Related]  

  • 11. Androgen receptor: role and novel therapeutic prospects in prostate cancer.
    Taplin ME
    Expert Rev Anticancer Ther; 2008 Sep; 8(9):1495-508. PubMed ID: 18759700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel therapeutic strategies for castration resistant prostate cancer: inhibition of persistent androgen production and androgen receptor mediated signaling.
    Molina A; Belldegrun A
    J Urol; 2011 Mar; 185(3):787-94. PubMed ID: 21239012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lessons from in-vivo models of castration-resistant prostate cancer.
    Lin D; Gout PW; Wang Y
    Curr Opin Urol; 2013 May; 23(3):214-9. PubMed ID: 23385975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment strategy for metastatic prostate cancer with extremely high PSA level: reconsidering the value of vintage therapy.
    Yamada Y; Sakamoto S; Amiya Y; Sasaki M; Shima T; Komiya A; Suzuki N; Akakura K; Ichikawa T; Nakatsu H
    Asian J Androl; 2018; 20(5):432-437. PubMed ID: 29735818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Alternative antiandrogen therapy with flutamide in patients with castration-resistant prostate cancer : a single center experience].
    Takada T; Ishizuya Y; Okada T; Ueda T; Inoue H; Hara T
    Hinyokika Kiyo; 2011 Jun; 57(6):291-5. PubMed ID: 21795830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of continuous androgen deprivation treatment on prostate cancer patients as compared with intermittent androgen deprivation treatment.
    Ku JY; Lee JZ; Ha HK
    Korean J Urol; 2015 Oct; 56(10):689-94. PubMed ID: 26495069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonsteroidal antiandrogen monotherapy of metastatic cancer of the prostate.
    Boccon-Gibod L
    Eur Urol; 1993; 24 Suppl 2():77-80. PubMed ID: 8262131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells.
    Xu M; Sakamoto S; Matsushima J; Kimura T; Ueda T; Mizokami A; Kanai Y; Ichikawa T
    J Urol; 2016 May; 195(5):1588-1597. PubMed ID: 26682754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro model for preclinical testing of endocrine therapy combinations for prostate cancer.
    Pfeiffer MJ; Mulders PF; Schalken JA
    Prostate; 2010 Oct; 70(14):1524-32. PubMed ID: 20687225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconsideration of progression to CRPC during androgen deprivation therapy.
    Mizokami A; Namiki M
    J Steroid Biochem Mol Biol; 2015 Jan; 145():164-71. PubMed ID: 24717975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.