These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2847550)

  • 1. pH in principal cells of frog skin (Rana pipiens): effects of amiloride and potential.
    Drewnowska K; Biber TU
    Am J Physiol; 1988 Nov; 255(5 Pt 2):F922-9. PubMed ID: 2847550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH in principal cells of frog skin (Rana pipiens): dependence on extracellular Na+.
    Drewnowska K; Cragoe EJ; Biber TU
    Am J Physiol; 1988 Nov; 255(5 Pt 2):F930-5. PubMed ID: 2847551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pHi regulation in frog retinal pigment epithelium: two apical membrane mechanisms.
    Lin H; Miller SS
    Am J Physiol; 1991 Jul; 261(1 Pt 1):C132-42. PubMed ID: 1858851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of changes in extracellular potassium on intracellular pH in principal cells of frog skin.
    Lyall V; Belcher TS; Biber TU
    Am J Physiol; 1992 Oct; 263(4 Pt 2):F722-30. PubMed ID: 1415743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of the intracellular pH-regulating systems of frog skeletal muscle.
    Putnam RW; Roos A; Wilding TJ
    J Physiol; 1986 Dec; 381():205-19. PubMed ID: 3114471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium.
    Hughes BA; Adorante JS; Miller SS; Lin H
    J Gen Physiol; 1989 Jul; 94(1):125-50. PubMed ID: 2553856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+ channel blockers inhibit voltage-dependent intracellular pH changes in principal cells of frog (Rana pipiens) skin.
    Lyall V; Belcher TS; Biber TU
    Comp Biochem Physiol Comp Physiol; 1993 Jul; 105(3):503-11. PubMed ID: 8101781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of intracellular pH and thermosensitivity.
    Lyons JC; Kim GE; Song CW
    Radiat Res; 1992 Jan; 129(1):79-87. PubMed ID: 1728060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of rabbit medullary collecting duct cell pH by basolateral Na+/H+ and Cl-/base exchange.
    Breyer MD; Jacobson HR
    J Clin Invest; 1989 Sep; 84(3):996-1004. PubMed ID: 2547843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH modulates cAMP-induced increase in Na+ transport across frog skin epithelium.
    Lyall V; Biber TU
    Biochim Biophys Acta; 1995 Nov; 1240(1):65-74. PubMed ID: 7495850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HCO3- transport in the toad lens epithelium is mediated by an electronegative Na(+)-dependent symport.
    Wolosin JM; Alvarez LJ; Candia OA
    Am J Physiol; 1990 May; 258(5 Pt 1):C855-61. PubMed ID: 2159230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state pHi, buffering power, and effect of CO2 in a smooth muscle-like cell line.
    Putnam RW; Grubbs RD
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C461-9. PubMed ID: 2107748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intracellular pH of frog skeletal muscle: its regulation in isotonic solutions.
    Abercrombie RF; Putnam RW; Roos A
    J Physiol; 1983 Dec; 345():175-87. PubMed ID: 6420546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of HCO3- in regulation of cytoplasmic pH in ciliary epithelial cells.
    Helbig H; Korbmacher C; Stumpff F; Coca-Prados M; Wiederholt M
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C696-705. PubMed ID: 2801920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidification and sodium entry in frog skin epithelium.
    Benos DJ
    Biochim Biophys Acta; 1981 Sep; 647(1):40-8. PubMed ID: 6975123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulus-secretion coupling in beta-cells: modulation by pH.
    Pace CS; Tarvin JT; Smith JS
    Am J Physiol; 1983 Jan; 244(1):E3-18. PubMed ID: 6295181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)-H+ and Na(+)-dependent Cl(-)-HCO3- exchange control pHi in vascular smooth muscle.
    Kahn AM; Cragoe EJ; Allen JC; Halligan RD; Shelat H
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C134-43. PubMed ID: 2164779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system.
    Deitmer JW; Szatkowski M
    J Physiol; 1990 Feb; 421():617-31. PubMed ID: 2112195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular pH in resting and in stimulated parietal cells.
    Paradiso AM; Townsley MC; Wenzl E; Machen TE
    Am J Physiol; 1989 Sep; 257(3 Pt 1):C554-61. PubMed ID: 2476937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmucosal electrical resistance in rabbit isolated gastric mucosa during exposure to acid.
    Spencer GE; Spraggs CF; Stables R; Hirst BH
    J Physiol; 1992 Apr; 449():169-81. PubMed ID: 1522508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.