These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 28475574)
1. Bringing RNA into the fold: Small molecules find new targets in RNA to combat disease. Chakradhar S Nat Med; 2017 May; 23(5):532-534. PubMed ID: 28475574 [No Abstract] [Full Text] [Related]
2. Nucleic Acid-Targeted Small Molecules have Therapeutic Potential in the Treatment of Spinal Muscular Atrophy: Small-molecule drugs that can selectively bind RNA and modulate pre-mRNA splicing have potential as a treatment strategy for human disease, including spinal muscular atrophy. Am J Med Genet A; 2018 Aug; 176(8):1698-1699. PubMed ID: 30136439 [No Abstract] [Full Text] [Related]
3. Discovery and Optimization of Small Molecule Splicing Modifiers of Survival Motor Neuron 2 as a Treatment for Spinal Muscular Atrophy. Woll MG; Qi H; Turpoff A; Zhang N; Zhang X; Chen G; Li C; Huang S; Yang T; Moon YC; Lee CS; Choi S; Almstead NG; Naryshkin NA; Dakka A; Narasimhan J; Gabbeta V; Welch E; Zhao X; Risher N; Sheedy J; Weetall M; Karp GM J Med Chem; 2016 Jul; 59(13):6070-85. PubMed ID: 27299569 [TBL] [Abstract][Full Text] [Related]
4. RNA-Binding Small Molecules in Drug Discovery and Delivery: An Overview from Fundamentals. Chen S; Mao Q; Cheng H; Tai W J Med Chem; 2024 Sep; 67(18):16002-16017. PubMed ID: 39287926 [TBL] [Abstract][Full Text] [Related]
5. The structure and function of catalytic RNAs. Wu Q; Huang L; Zhang Y Sci China C Life Sci; 2009 Mar; 52(3):232-44. PubMed ID: 19294348 [TBL] [Abstract][Full Text] [Related]
6. Inhibiting caspase-6 activation and catalytic activity for neurodegenerative diseases. Flygare JA; Arkin MR Curr Top Med Chem; 2014; 14(3):319-25. PubMed ID: 24283214 [TBL] [Abstract][Full Text] [Related]
7. Ribozymes: structure and mechanism in RNA catalysis. Scott WG; Klug A Trends Biochem Sci; 1996 Jun; 21(6):220-4. PubMed ID: 8744356 [TBL] [Abstract][Full Text] [Related]
9. How We Think about Targeting RNA with Small Molecules. Costales MG; Childs-Disney JL; Haniff HS; Disney MD J Med Chem; 2020 Sep; 63(17):8880-8900. PubMed ID: 32212706 [TBL] [Abstract][Full Text] [Related]
10. Targeting RNA with small molecules. Tor Y Chembiochem; 2003 Oct; 4(10):998-1007. PubMed ID: 14523917 [No Abstract] [Full Text] [Related]
12. Ribozyme catalysis revisited: is water involved? Walter NG Mol Cell; 2007 Dec; 28(6):923-9. PubMed ID: 18158891 [TBL] [Abstract][Full Text] [Related]
13. Unveiling the druggable RNA targets and small molecule therapeutics. Sztuba-Solinska J; Chavez-Calvillo G; Cline SE Bioorg Med Chem; 2019 May; 27(10):2149-2165. PubMed ID: 30981606 [TBL] [Abstract][Full Text] [Related]
14. Linkage between proton binding and folding in RNA: implications for RNA catalysis. Bevilacqua PC; Brown TS; Chadalavada D; Lecomte J; Moody E; Nakano SI Biochem Soc Trans; 2005 Jun; 33(Pt 3):466-70. PubMed ID: 15916542 [TBL] [Abstract][Full Text] [Related]
15. mRNA regulation: A patch for a splice. Miller BL Nat Chem Biol; 2015 Jul; 11(7):454-5. PubMed ID: 26083069 [No Abstract] [Full Text] [Related]
16. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Serganov A; Patel DJ Nat Rev Genet; 2007 Oct; 8(10):776-90. PubMed ID: 17846637 [TBL] [Abstract][Full Text] [Related]
17. A modular, bifunctional RNA that integrates itself into a target RNA. Kumar RM; Joyce GF Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9738-43. PubMed ID: 12913125 [TBL] [Abstract][Full Text] [Related]
18. The effect of secondary structure on cleavage of the phosphodiester bonds of RNA. Mikkola S; Kaukinen U; Lönnberg H Cell Biochem Biophys; 2001; 34(1):95-119. PubMed ID: 11394443 [TBL] [Abstract][Full Text] [Related]
19. Frameworks for targeting RNA with small molecules. Umuhire Juru A; Hargrove AE J Biol Chem; 2021; 296():100191. PubMed ID: 33334887 [TBL] [Abstract][Full Text] [Related]