BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2847576)

  • 1. Disturbances in Na+ transport systems induced by ethanol in human red blood cells.
    Coca A; Garay R
    Alcohol Clin Exp Res; 1988 Aug; 12(4):534-8. PubMed ID: 2847576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disturbances of transmembranous sodium transport systems induced by ethanol in human erythrocytes. An approach to the pressor effect of alcohol.
    Coca A; Garay RP; Aguilera MT; De la Sierra A; Urbano-Márquez A
    Am J Hypertens; 1989 Oct; 2(10):784-7. PubMed ID: 2553070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cadmium on transmembrane Na+ and K+ transport systems in human erythrocytes.
    Lijnen P; Staessen J; Fagard R; Amery A
    Br J Ind Med; 1991 Jun; 48(6):392-8. PubMed ID: 1648375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol modulation of transmembrane cation transport systems in human erythrocytes.
    Lijnen P; Petrov V
    Biochem Mol Med; 1995 Oct; 56(1):52-62. PubMed ID: 8593538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic alcohol intake induces reversible disturbances on cellular Na+ metabolism in humans: its relationship with changes in blood pressure.
    Coca A; Aguilera MT; De la Sierra A; Sánchez M; Picado MJ; Lluch MM; Urbano-Márquez A
    Alcohol Clin Exp Res; 1992 Aug; 16(4):714-20. PubMed ID: 1326903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of metabolic depletion on the furosemide-sensitive Na and K fluxes in human red cells.
    Dagher G; Brugnara C; Canessa M
    J Membr Biol; 1985; 86(2):145-55. PubMed ID: 2993628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outward sodium and potassium cotransport in human red cells.
    Garay R; Adragna N; Canessa M; Tosteson D
    J Membr Biol; 1981; 62(3):169-74. PubMed ID: 7328628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red cell lithium-sodium countertransport and sodium-potassium cotransport in patients with essential hypertension.
    Adragna NC; Canessa ML; Solomon H; Slater E; Tosteson DC
    Hypertension; 1982; 4(6):795-804. PubMed ID: 7141606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thallium and the sodium pump in human red cells.
    Cavieres JD; Ellory JC
    J Physiol; 1974 Nov; 243(1):243-66. PubMed ID: 4449062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells.
    Adragna NC; Tosteson DC
    J Membr Biol; 1984; 78(1):43-52. PubMed ID: 6323716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a direct and non-receptor-mediated action of 5HT2 antagonists on transmembrane cation transport systems.
    Sechi LA; Tedde R; Cassisa L; Pala A; Marigliano A; Masia S; Melis A
    Cardiovasc Drugs Ther; 1990 Jan; 4 Suppl 1():63-7. PubMed ID: 2178367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of membrane cholesterol on the sodium pump in red blood cells.
    Claret M; Garay R; Giraud F
    J Physiol; 1978 Jan; 274():247-63. PubMed ID: 624995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump.
    Dissing S; Hoffman JF
    J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral effects of thyroid hormones: alteration of intracellular Na-concentration, ouabain-sensitive Na-transport, and Na-Li countertransport in human red blood cells.
    Sütterlin U; Gless KH; Schaz K; Hüfner M; Schütz V; Hunstein W
    Klin Wochenschr; 1984 Jun; 62(12):598-601. PubMed ID: 6090760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythrocyte cation transport systems and membrane lipids in insulin-dependent diabetes.
    Lijnen P; Fenyvesi A; Bex M; Bouillon R; Amery A
    Am J Hypertens; 1993 Sep; 6(9):763-70. PubMed ID: 8110430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Na+ and K+ ion transport across the human erythrocyte membrane during the formation of nystatin channels under in-vitro conditions: the characteristics and an analysis of the processes].
    Borisov IuA; Soboleva OIu; Suglobova ED; Fedorovich EE
    Tsitologiia; 1994; 36(5):427-36. PubMed ID: 7809978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole.
    Duhm J; Becker BF
    Pflugers Arch; 1977 Jan; 367(3):211-9. PubMed ID: 13345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modes of operation and variable stoichiometry of the furosemide- sensitive Na and K fluxes in human red cells.
    Canessa M; Brugnara C; Cusi D; Tosteson DC
    J Gen Physiol; 1986 Jan; 87(1):113-42. PubMed ID: 3950574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red blood cell sodium and potassium fluxes in psoriatic patients.
    Semplicini A; Mozzato MG; Rigon E; Parolin O; Samà B; Padovan S; Degan P; Peserico A; Pessina AC
    Eur J Clin Invest; 1988 Feb; 18(1):47-51. PubMed ID: 2835244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium efflux through the Na/K pump in human erythrocytes.
    Dunham PB; Senyk O
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3099-103. PubMed ID: 268658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.