These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28475843)

  • 1. Ultrastrong and Bioactive Nanostructured Bio-Based Composites.
    Mittal N; Jansson R; Widhe M; Benselfelt T; Håkansson KMO; Lundell F; Hedhammar M; Söderberg LD
    ACS Nano; 2017 May; 11(5):5148-5159. PubMed ID: 28475843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements.
    Mohammadi P; Aranko AS; Landowski CP; Ikkala O; Jaudzems K; Wagermaier W; Linder MB
    Sci Adv; 2019 Sep; 5(9):eaaw2541. PubMed ID: 31548982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.
    Nova A; Keten S; Pugno NM; Redaelli A; Buehler MJ
    Nano Lett; 2010 Jul; 10(7):2626-34. PubMed ID: 20518518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-strength and ultra-tough supramolecular polyamide spider silk fibers assembled via specific covalent and reversible hydrogen bonds.
    Mi J; Li X; Niu S; Zhou X; Lu Y; Yang Y; Sun Y; Meng Q
    Acta Biomater; 2024 Mar; 176():190-200. PubMed ID: 38199426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness.
    Giesa T; Arslan M; Pugno NM; Buehler MJ
    Nano Lett; 2011 Nov; 11(11):5038-46. PubMed ID: 21967633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly.
    Meirovitch S; Shtein Z; Ben-Shalom T; Lapidot S; Tamburu C; Hu X; Kluge JA; Raviv U; Kaplan DL; Shoseyov O
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27649169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process.
    Zhu H; Sun Y; Yi T; Wang S; Mi J; Meng Q
    Biochimie; 2020 Aug; 175():77-84. PubMed ID: 32417459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles.
    He W; Wang M; Mei G; Liu S; Khan AQ; Li C; Feng D; Su Z; Bao L; Wang G; Liu E; Zhu Y; Bai J; Zhu M; Zhou X; Liu Z
    Nat Commun; 2024 Apr; 15(1):3485. PubMed ID: 38664427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the elastic nature of spider silk in pursuit of the next designer fiber.
    Brooks AE; Lewis RV
    Biomed Sci Instrum; 2004; 40():232-7. PubMed ID: 15133963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanics of silk nanostructures under varied mechanical loading.
    Bratzel G; Buehler MJ
    Biopolymers; 2012 Jun; 97(6):408-17. PubMed ID: 22020792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications.
    Humenik M; Pawar K; Scheibel T
    Adv Exp Med Biol; 2019; 1174():187-221. PubMed ID: 31713200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spider silk: from soluble protein to extraordinary fiber.
    Heim M; Keerl D; Scheibel T
    Angew Chem Int Ed Engl; 2009; 48(20):3584-96. PubMed ID: 19212993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical Properties of Twisted Cellulose Nanofiber-Reinforced Silk Yarns.
    Richard M; Kobayashi G; Wang Z; Kurita H; Narita F
    ACS Biomater Sci Eng; 2024 Jul; 10(7):4237-4244. PubMed ID: 38853637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spider capture silk: performance implications of variation in an exceptional biomaterial.
    Swanson BO; Blackledge TA; Hayashi CY
    J Exp Zool A Ecol Genet Physiol; 2007 Nov; 307(11):654-66. PubMed ID: 17853401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergetic material and structure optimization yields robust spider web anchorages.
    Pugno NM; Cranford SW; Buehler MJ
    Small; 2013 Aug; 9(16):2747-56. PubMed ID: 23585296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers.
    Mittal N; Ansari F; Gowda V K; Brouzet C; Chen P; Larsson PT; Roth SV; Lundell F; Wågberg L; Kotov NA; Söderberg LD
    ACS Nano; 2018 Jul; 12(7):6378-6388. PubMed ID: 29741364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spider silk: understanding the structure-function relationship of a natural fiber.
    Humenik M; Scheibel T; Smith A
    Prog Mol Biol Transl Sci; 2011; 103():131-85. PubMed ID: 21999996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.