BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 2847586)

  • 1. Radicals from "Good's" buffers.
    Grady JK; Chasteen ND; Harris DC
    Anal Biochem; 1988 Aug; 173(1):111-5. PubMed ID: 2847586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen peroxide formation by reaction of peroxynitrite with HEPES and related tertiary amines. Implications for a general mechanism.
    Kirsch M; Lomonosova EE; Korth HG; Sustmann R; de Groot H
    J Biol Chem; 1998 May; 273(21):12716-24. PubMed ID: 9582295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of Good's buffers by hydrogen peroxide.
    Zhao G; Chasteen ND
    Anal Biochem; 2006 Feb; 349(2):262-7. PubMed ID: 16289439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron autoxidation in Mops and Hepes buffers.
    Tadolini B
    Free Radic Res Commun; 1987; 4(3):149-60. PubMed ID: 3148493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl radical production during oxidative deposition of iron in ferritin.
    Grady JK; Chen Y; Chasteen ND; Harris DC
    J Biol Chem; 1989 Dec; 264(34):20224-9. PubMed ID: 2555348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Good's Buffers and pH on the Structural Transformation of Zero Valent Iron and the Oxidative Degradation of Contaminants.
    He C; He D; Collins RN; Garg S; Mu Y; Waite TD
    Environ Sci Technol; 2018 Feb; 52(3):1393-1403. PubMed ID: 29307183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin-trapping studies of the oxidation-reduction reactions of iron bleomycin in the presence of thiols and buffer.
    Antholine WE; Kalyanaraman B; Templin JA; Byrnes RW; Petering DH
    Free Radic Biol Med; 1991; 10(2):119-23. PubMed ID: 1707847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of chromium(VI) with ascorbate produces chromium(V), chromium(IV), and carbon-based radicals.
    Stearns DM; Wetterhahn KE
    Chem Res Toxicol; 1994; 7(2):219-30. PubMed ID: 8199312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD; Davis TZ; Aust SD
    Arch Biochem Biophys; 2002 Jan; 397(2):360-9. PubMed ID: 11795895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma.
    Minetti M; Forte T; Soriani M; Quaresima V; Menditto A; Ferrari M
    Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):459-65. PubMed ID: 1312330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals.
    Halliwell B; Gutteridge JM; Aruoma OI
    Anal Biochem; 1987 Aug; 165(1):215-9. PubMed ID: 3120621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic buffers act as reductants of abiotic and biogenic manganese oxides.
    Hausladen DM; Peña J
    Sci Rep; 2023 Apr; 13(1):6498. PubMed ID: 37081009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin: a mechanism for the generation of hydroxyl radicals.
    Van Dyke BR; Saltman P
    Free Radic Biol Med; 1996; 20(7):985-9. PubMed ID: 8743985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of hydroxyl radicals with tris (hydroxymethyl) aminomethane and Good's buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde.
    Shiraishi H; Kataoka M; Morita Y; Umemoto J
    Free Radic Res Commun; 1993; 19(5):315-21. PubMed ID: 8314112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR).
    Fadda A; Barberis A; Sanna D
    Food Chem; 2018 Feb; 240():174-182. PubMed ID: 28946259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron spin resonance spectroscopy of oxygen radicals generated by synthetic fecapentaene-12 and reduction of fecapentaene mutagenicity to Salmonella typhimurium by hydroxyl radical scavenging.
    de Kok TM; van Maanen JM; Lankelma J; ten Hoor F; Kleinjans JC
    Carcinogenesis; 1992 Jul; 13(7):1249-55. PubMed ID: 1322251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The autoxidation of iron(II) in aqueous systems: the effects of iron chelation by physiological, non-physiological and therapeutic chelators on the generation of reactive oxygen species and the inducement of biomolecular damage.
    Burkitt MJ; Gilbert BC
    Free Radic Res Commun; 1991; 14(2):107-23. PubMed ID: 1648018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radical mechanism of oxidation of uroporphyrinogen in the presence of ferrous iron.
    Mukerji SK; Pimstone NR
    Arch Biochem Biophys; 1990 Sep; 281(2):177-84. PubMed ID: 2168153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.