These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 28476241)
21. Activation mechanism, functional role and shedding of glycosylphosphatidylinositol-anchored Yps1p at the Saccharomyces cerevisiae cell surface. Gagnon-Arsenault I; Parisé L; Tremblay J; Bourbonnais Y Mol Microbiol; 2008 Aug; 69(4):982-93. PubMed ID: 18573178 [TBL] [Abstract][Full Text] [Related]
22. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296 [TBL] [Abstract][Full Text] [Related]
23. Identification of novel genes to assign enhanced tolerance to osmotic stress in Saccharomyces cerevisiae. Kim B; Kim HS FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29931330 [TBL] [Abstract][Full Text] [Related]
24. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Cheng Y; Du Z; Zhu H; Guo X; He X Sci Rep; 2016 Aug; 6():31311. PubMed ID: 27507154 [TBL] [Abstract][Full Text] [Related]
25. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae. Narayanan A; Pullepu D; Reddy PK; Uddin W; Kabir MA Curr Microbiol; 2016 Jul; 73(1):38-45. PubMed ID: 26992923 [TBL] [Abstract][Full Text] [Related]
26. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155 [TBL] [Abstract][Full Text] [Related]
27. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae. Nasution O; Lee J; Srinivasa K; Choi IG; Lee YM; Kim E; Choi W; Kim W Environ Microbiol; 2015 Aug; 17(8):2721-34. PubMed ID: 25297926 [TBL] [Abstract][Full Text] [Related]
28. Cui HJ; Cui XG; Jing X; Yuan Y; Chen YQ; Sun YX; Zhao W; Liu XG Biomed Res Int; 2019; 2019():1238581. PubMed ID: 31275960 [TBL] [Abstract][Full Text] [Related]
29. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. de Melo HF; Bonini BM; Thevelein J; Simões DA; Morais MA J Appl Microbiol; 2010 Jul; 109(1):116-27. PubMed ID: 20002866 [TBL] [Abstract][Full Text] [Related]
30. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. Geng P; Zhang L; Shi GY World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910 [TBL] [Abstract][Full Text] [Related]
31. FPG1, a gene involved in foam formation in Saccharomyces cerevisiae. Blasco L; Veiga-Crespo P; Villa TG Yeast; 2011 Jun; 28(6):437-51. PubMed ID: 21425329 [TBL] [Abstract][Full Text] [Related]
32. Phenotype analysis of Saccharomyces cerevisiae mutants with deletions in Pir cell wall glycoproteins. Mazán M; Mazánová K; Farkas V Antonie Van Leeuwenhoek; 2008 Aug; 94(2):335-42. PubMed ID: 18278564 [TBL] [Abstract][Full Text] [Related]
33. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae. Tangsombatvichit P; Semkiv MV; Sibirny AA; Jensen LT; Ratanakhanokchai K; Soontorngun N FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25673751 [TBL] [Abstract][Full Text] [Related]
34. Candida albicans homologue of GGP1/GAS1 gene is functional in Saccharomyces cerevisiae and contains the determinants for glycosylphosphatidylinositol attachment. Vai M; Orlandi I; Cavadini P; Alberghina L; Popolo L Yeast; 1996 Mar; 12(4):361-8. PubMed ID: 8701608 [TBL] [Abstract][Full Text] [Related]
35. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Ma M; Liu ZL Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391 [TBL] [Abstract][Full Text] [Related]
36. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Hong ME; Lee KS; Yu BJ; Sung YJ; Park SM; Koo HM; Kweon DH; Park JC; Jin YS J Biotechnol; 2010 Aug; 149(1-2):52-9. PubMed ID: 20600383 [TBL] [Abstract][Full Text] [Related]
37. GAS2 and GAS4, a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae. Ragni E; Coluccio A; Rolli E; Rodriguez-Peña JM; Colasante G; Arroyo J; Neiman AM; Popolo L Eukaryot Cell; 2007 Feb; 6(2):302-16. PubMed ID: 17189486 [TBL] [Abstract][Full Text] [Related]
38. Novel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains. Inokuma K; Kurono H; den Haan R; van Zyl WH; Hasunuma T; Kondo A Metab Eng; 2020 Jan; 57():110-117. PubMed ID: 31715252 [TBL] [Abstract][Full Text] [Related]
39. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. Wang Y; Zhang S; Liu H; Zhang L; Yi C; Li H J Basic Microbiol; 2015 Dec; 55(12):1417-26. PubMed ID: 26265555 [TBL] [Abstract][Full Text] [Related]
40. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Endo A; Nakamura T; Shima J FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]