These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Crowding effects on diffusion in solutions and cells. Dix JA; Verkman AS Annu Rev Biophys; 2008; 37():247-63. PubMed ID: 18573081 [TBL] [Abstract][Full Text] [Related]
4. Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Ridgway D; Broderick G; Lopez-Campistrous A; Ru'aini M; Winter P; Hamilton M; Boulanger P; Kovalenko A; Ellison MJ Biophys J; 2008 May; 94(10):3748-59. PubMed ID: 18234819 [TBL] [Abstract][Full Text] [Related]
5. Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. Marquez-Lago TT; Leier A; Burrage K IET Syst Biol; 2012 Aug; 6(4):134-42. PubMed ID: 23039694 [TBL] [Abstract][Full Text] [Related]
6. Lattice model of diffusion-limited bimolecular chemical reactions in confined environments. Schmit JD; Kamber E; Kondev J Phys Rev Lett; 2009 May; 102(21):218302. PubMed ID: 19519142 [TBL] [Abstract][Full Text] [Related]
7. Stochastic off-lattice modeling of molecular self-assembly in crowded environments by Green's function reaction dynamics. Lee B; Leduc PR; Schwartz R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031911. PubMed ID: 18851069 [TBL] [Abstract][Full Text] [Related]
8. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy. Baumann G; Place RF; Földes-Papp Z Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227 [TBL] [Abstract][Full Text] [Related]
9. Multiscale Modeling of Diffusion in a Crowded Environment. Meinecke L Bull Math Biol; 2017 Nov; 79(11):2672-2695. PubMed ID: 28924915 [TBL] [Abstract][Full Text] [Related]
10. A Lattice-Boltzmann scheme for the simulation of diffusion in intracellular crowded systems. Angeles-Martinez L; Theodoropoulos C BMC Bioinformatics; 2015 Nov; 16():353. PubMed ID: 26530635 [TBL] [Abstract][Full Text] [Related]
11. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model. Chin J; Boek ES; Coveney PV Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):547-58. PubMed ID: 16214694 [TBL] [Abstract][Full Text] [Related]
12. Optimization of a Brownian-dynamics algorithm for semidilute polymer solutions. Jain A; Sunthar P; Dünweg B; Prakash JR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066703. PubMed ID: 23005239 [TBL] [Abstract][Full Text] [Related]
13. What determines sub-diffusive behavior in crowded protein solutions? Kompella VPS; Romano MC; Stansfield I; Mancera RL Biophys J; 2024 Jan; 123(2):134-146. PubMed ID: 38073154 [TBL] [Abstract][Full Text] [Related]
14. Reaction-diffusion master equation in the microscopic limit. Hellander S; Hellander A; Petzold L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):042901. PubMed ID: 22680526 [TBL] [Abstract][Full Text] [Related]
15. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques. Saadat A; Khomami B J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302 [TBL] [Abstract][Full Text] [Related]
16. Lattice Boltzmann simulations of binary fluid flow through porous media. Tölke J; Krafczyk M; Schulz M; Rank E Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693 [TBL] [Abstract][Full Text] [Related]
18. Lattice Boltzmann simulations of contact line motion in a liquid-gas system. Briant AJ; Papatzacos P; Yeomans JM Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):485-95. PubMed ID: 16214689 [TBL] [Abstract][Full Text] [Related]
19. Role of dissolved salts in thermophoresis of DNA: lattice-Boltzmann-based simulations. Hammack A; Chen YL; Pearce JK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031915. PubMed ID: 21517533 [TBL] [Abstract][Full Text] [Related]
20. Collective dynamics in systems of active Brownian particles with dissipative interactions. Lobaskin V; Romenskyy M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052135. PubMed ID: 23767515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]