BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2847724)

  • 1. Evidence of gene amplification in tunicamycin-resistant Chinese hamster ovary cells.
    Scocca JR; Hartog KO; Krag SS
    Biochem Biophys Res Commun; 1988 Nov; 156(3):1063-9. PubMed ID: 2847724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clonal derivative of tunicamycin-resistant Chinese hamster ovary cells with increased N-acetylglucosamine-phosphate transferase activity has altered asparagine-linked glycosylation.
    Waldman BC; Oliver C; Krag SS
    J Cell Physiol; 1987 Jun; 131(3):302-17. PubMed ID: 3036885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification and molecular cloning of the hamster tunicamycin-sensitive N-acetylglucosamine-1-phosphate transferase gene. The hamster and yeast enzymes share a common peptide sequence.
    Lehrman MA; Zhu XY; Khounlo S
    J Biol Chem; 1988 Dec; 263(36):19796-803. PubMed ID: 2848842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence of a cDNA that specifies the uridine diphosphate N-acetyl-D-glucosamine:dolichol phosphate N-acetylglucosamine-1-phosphate transferase from Chinese hamster ovary cells.
    Scocca JR; Krag SS
    J Biol Chem; 1990 Nov; 265(33):20621-6. PubMed ID: 1700792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that the hamster tunicamycin resistance gene encodes UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1-phosphate transferase.
    Zhu X; Zeng Y; Lehrman MA
    J Biol Chem; 1992 May; 267(13):8895-902. PubMed ID: 1315744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of tunicamycin-resistant Chinese hamster ovary cells with increased N-acetylglucosaminyltransferase activity.
    Criscuolo BA; Krag SS
    J Cell Biol; 1982 Sep; 94(3):586-91. PubMed ID: 6215412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-acetylglucosamine-1-phosphate transferase gene is conserved in five Leishmania spp. and overexpressed due to its amplification in their tunicamycin-resistant variants.
    Liu X; Chang KP
    Mol Biochem Parasitol; 1993 May; 59(1):177-9. PubMed ID: 8390612
    [No Abstract]   [Full Text] [Related]  

  • 8. Tunicamycin-resistant variants from five species of Leishmania contain amplified DNA in extrachromosomal circles of different sizes with a transcriptionally active homologous region.
    Katakura K; Peng Y; Pithawalla R; Detke S; Chang KP
    Mol Biochem Parasitol; 1991 Feb; 44(2):233-43. PubMed ID: 1646959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asparagine-linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step.
    Barnes G; Hansen WJ; Holcomb CL; Rine J
    Mol Cell Biol; 1984 Nov; 4(11):2381-8. PubMed ID: 6096695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic sequence coding for tunicamycin resistance in yeast.
    Hartog KO; Bishop B
    Nucleic Acids Res; 1987 Apr; 15(8):3627. PubMed ID: 3033607
    [No Abstract]   [Full Text] [Related]  

  • 11. Asparagine-linked glycosylation in Schizosaccharomyces pombe: functional conservation of the first step in oligosaccharide-lipid assembly.
    Zou J; Scocca JR; Krag SS
    Arch Biochem Biophys; 1995 Mar; 317(2):487-96. PubMed ID: 7893167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 63-kilobase circular amplicon of tunicamycin-resistant Leishmania amazonensis contains a functional N-acetylglucosamine-1-phosphate transferase gene that can be used as a dominant selectable marker in transfection.
    Liu X; Chang KP
    Mol Cell Biol; 1992 Sep; 12(9):4112-22. PubMed ID: 1324414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Escherichia coli mraY gene encoding UDP-N-acetylmuramoyl-pentapeptide: undecaprenyl-phosphate phospho-N-acetylmuramoyl-pentapeptide transferase.
    Ikeda M; Wachi M; Jung HK; Ishino F; Matsuhashi M
    J Bacteriol; 1991 Feb; 173(3):1021-6. PubMed ID: 1846850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA amplification in tunicamycin-resistant Leishmania mexicana. Multicopies of a single 63-kilobase supercoiled molecule and their expression.
    Detke S; Chaudhuri G; Kink JA; Chang KP
    J Biol Chem; 1988 Mar; 263(7):3418-24. PubMed ID: 2449440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, sequence, and expression of a cDNA encoding hamster UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1-phosphate transferase.
    Zhu XY; Lehrman MA
    J Biol Chem; 1990 Aug; 265(24):14250-5. PubMed ID: 2167312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific gene amplification associated with consistent chromosomal abnormality in independently established multidrug-resistant Chinese hamster ovary cells.
    Sen S; Teeter LD; Kuo T
    Chromosoma; 1987; 95(2):117-25. PubMed ID: 3595311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological and biochemical characterization of tunicamycin-resistant Leishmania mexicana: mechanism of drug resistance and virulence.
    Kink JA; Chang KP
    Infect Immun; 1987 Jul; 55(7):1692-700. PubMed ID: 3036710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of a gene that encodes the first enzyme in the biosynthesis of asparagine-linked glycans makes plants resistant to tunicamycin and obviates the tunicamycin-induced unfolded protein response.
    Koizumi N; Ujino T; Sano H; Chrispeels MJ
    Plant Physiol; 1999 Oct; 121(2):353-61. PubMed ID: 10517826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic organization and expression of hamster UDP-N-acetylglucosamine:dolichyl phosphate N-acetylglucosaminyl phosphoryl transferase.
    Scocca JR; Zou J; Krag SS
    Glycobiology; 1995 Feb; 5(1):129-36. PubMed ID: 7772861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein glycosylation in yeast: transcript heterogeneity of the ALG7 gene.
    Kukuruzinska MA; Robbins PW
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2145-9. PubMed ID: 3031666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.