BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28477279)

  • 1. Temporal clustering of surgical activities in robot-assisted surgery.
    Zia A; Zhang C; Xiong X; Jarc AM
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1171-1178. PubMed ID: 28477279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting surgical skill from the first N seconds of a task: value over task time using the isogony principle.
    French A; Lendvay TS; Sweet RM; Kowalewski TM
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1161-1170. PubMed ID: 28516300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-assisted ex vivo neobladder reconstruction: preliminary results of surgical skill evaluation.
    Chen Z; Terlizzi S; Da Col T; Marzullo A; Catellani M; Ferrigno G; De Momi E
    Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2315-2323. PubMed ID: 35802223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.
    Fard MJ; Ameri S; Darin Ellis R; Chinnam RB; Pandya AK; Klein MD
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training program for fundamental surgical skill in robotic laparoscopic surgery.
    Suh I; Mukherjee M; Oleynikov D; Siu KC
    Int J Med Robot; 2011 Sep; 7(3):327-33. PubMed ID: 21688381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer.
    Brown JD; O Brien CE; Leung SC; Dumon KR; Lee DI; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2263-2275. PubMed ID: 28113295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery.
    Moglia A; Ferrari V; Morelli L; Ferrari M; Mosca F; Cuschieri A
    Eur Urol; 2016 Jun; 69(6):1065-80. PubMed ID: 26433570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Spatial Cognitive Ability on Gain in Robot-Assisted Surgical Skills of Urological Surgeons.
    Teishima J; Hattori M; Inoue S; Hieda K; Kobatake K; Shinmei S; Egi H; Ohdan H; Matsubara A
    J Surg Educ; 2016; 73(4):624-30. PubMed ID: 27052203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does transition from the da Vinci Si to Xi robotic platform impact single-docking technique for robot-assisted laparoscopic nephroureterectomy?
    Patel MN; Aboumohamed A; Hemal A
    BJU Int; 2015 Dec; 116(6):990-4. PubMed ID: 26123244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System events: readily accessible features for surgical phase detection.
    Malpani A; Lea C; Chen CC; Hager GD
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1201-9. PubMed ID: 27177760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive skills assessment during robot-assisted surgery: separating the wheat from the chaff.
    Guru KA; Esfahani ET; Raza SJ; Bhat R; Wang K; Hammond Y; Wilding G; Peabody JO; Chowriappa AJ
    BJU Int; 2015 Jan; 115(1):166-74. PubMed ID: 24467726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viewpoint matters: objective performance metrics for surgeon endoscope control during robot-assisted surgery.
    Jarc AM; Curet MJ
    Surg Endosc; 2017 Mar; 31(3):1192-1202. PubMed ID: 27422247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions.
    Lin HC; Shafran I; Yuh D; Hager GD
    Comput Aided Surg; 2006 Sep; 11(5):220-30. PubMed ID: 17127647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surgical Competency for Robot-Assisted Hysterectomy: Development and Validation of a Robotic Hysterectomy Assessment Score (RHAS).
    Frederick PJ; Szender JB; Hussein AA; Kesterson JP; Shelton JA; Anderson TL; Barnabei VM; Guru K
    J Minim Invasive Gynecol; 2017 Jan; 24(1):55-61. PubMed ID: 27780777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transferability of Virtual Reality, Simulation-Based, Robotic Suturing Skills to a Live Porcine Model in Novice Surgeons: A Single-Blind Randomized Controlled Trial.
    Vargas MV; Moawad G; Denny K; Happ L; Misa NY; Margulies S; Opoku-Anane J; Abi Khalil E; Marfori C
    J Minim Invasive Gynecol; 2017; 24(3):420-425. PubMed ID: 28027975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surgical skill levels: Classification and analysis using deep neural network model and motion signals.
    Nguyen XA; Ljuhar D; Pacilli M; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2019 Aug; 177():1-8. PubMed ID: 31319938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules.
    Mouraviev V; Klein M; Schommer E; Thiel DD; Samavedi S; Kumar A; Leveillee RJ; Thomas R; Pow-Sang JM; Su LM; Mui E; Smith R; Patel V
    J Robot Surg; 2016 Mar; 10(1):49-56. PubMed ID: 26753619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distance-based time series classification approach for task recognition with application in surgical robot autonomy.
    Fard MJ; Pandya AK; Chinnam RB; Klein MD; Ellis RD
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27538804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model).
    Whitehurst SV; Lockrow EG; Lendvay TS; Propst AM; Dunlow SG; Rosemeyer CJ; Gobern JM; White LW; Skinner A; Buller JL
    J Minim Invasive Gynecol; 2015; 22(3):483-8. PubMed ID: 25543068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.