These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 28477556)

  • 1. Giant vesicles (GV) in colloidal system under the optical polarization microscope (OPM).
    Khalid K; Noh MAM; Khan MN; Ishak R; Penney E; Chowdhury ZZ; Hamzah MH; Othman M
    Micron; 2017 Sep; 100():30-33. PubMed ID: 28477556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and rheological measurements of the effects of inert 2-, 3- and 4-bromobenzoate ions on the cationic micellar-mediated rate of piperidinolysis of ionized phenyl salicylate.
    Yusof NS; Niyaz Khan M
    J Colloid Interface Sci; 2011 May; 357(1):121-8. PubMed ID: 21333302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of an ion exchange constant by the use of a kinetic probe: a new semiempirical kinetic approach involving the effects of 3-F- and 4-F-substituted benzoates on the rate of piperidinolysis of anionic phenyl salicylate in aqueous cationic micelles.
    Yusof NS; Khan MN
    Langmuir; 2010 Jul; 26(13):10627-35. PubMed ID: 20524703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of [NaOH] and [KBr] on Intramolecular General Base-Catalyzed Methanolysis of Ionized Phenyl Salicylate in the Presence of Cationic Micelles.
    Khan MN
    J Org Chem; 1997 May; 62(10):3190-3193. PubMed ID: 11671702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and mechanism of nanoparticles-catalyzed piperidinolysis of anionic phenyl salicylate.
    Razak NA; Khan MN
    ScientificWorldJournal; 2014; 2014():604139. PubMed ID: 25478597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and Mechanism of Cationic Flexible Nanoparticles (CFN) - Catalyzed Piperidinolysis of Anionic Phenyl Salicylate: CFN = TTABr/MX/H2O with MX = NaCl, NaBr; CnH2n+1CO2Na, n = 4, 5, 6 and 7.
    Mohd Noh MA; Khalid K; Ariffin A; Khan MN
    J Oleo Sci; 2016; 65(9):749-58. PubMed ID: 27581491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of.
    Khan MN; Arifin Z; Ismail E; Ali SF
    J Org Chem; 2000 Mar; 65(5):1331-4. PubMed ID: 10814092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetrical Polyhedral Configuration of Giant Vesicles Induced by Orderly Array of Encapsulated Colloidal Particles.
    Natsume Y; Toyota T
    PLoS One; 2016; 11(1):e0146683. PubMed ID: 26752650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative correlation of counterion (X) affinity to ionic micelles and X- and temperature-induced micellar growth (spherical-wormlike micelles-vesicles) for X = 5-methyl- and 5-methoxysalicylate ions.
    Yusof NS; Khan MN
    J Phys Chem B; 2012 Feb; 116(7):2065-74. PubMed ID: 22272582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.
    Wesołowska O; Michalak K; Maniewska J; Hendrich AB
    Acta Biochim Pol; 2009; 56(1):33-9. PubMed ID: 19287805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry.
    Nishimura K; Matsuura T; Nishimura K; Sunami T; Suzuki H; Yomo T
    Langmuir; 2012 Jun; 28(22):8426-32. PubMed ID: 22578080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of [NaBr] on the rate of intramolecular general base-assisted hydrolysis of n-(2'-hydroxyphenyl)phthalimide in the presence of cationic micelles: kinetic evidence for the probable micellar structural transition.
    Khan MN; Azri MH
    J Phys Chem B; 2010 Jun; 114(24):8089-99. PubMed ID: 20509705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy.
    Dimova R; Aranda S; Bezlyepkina N; Nikolov V; Riske KA; Lipowsky R
    J Phys Condens Matter; 2006 Jul; 18(28):S1151-76. PubMed ID: 21690835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic evidence for the occurrence of independent ion-exchange processes in the cationic micellar-mediated reaction of piperidine with anionic phenyl salicylate.
    Khan MN; Ismail E
    J Phys Chem A; 2009 Jun; 113(23):6484-8. PubMed ID: 19449852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles.
    Gantz DL; Wang DQ; Carey MC; Small DM
    Biophys J; 1999 Mar; 76(3):1436-51. PubMed ID: 10049325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion.
    Kahya N; Pécheur EI; de Boeij WP; Wiersma DA; Hoekstra D
    Biophys J; 2001 Sep; 81(3):1464-74. PubMed ID: 11509360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.
    Arriaga LR; Datta SS; Kim SH; Amstad E; Kodger TE; Monroy F; Weitz DA
    Small; 2014 Mar; 10(5):950-6. PubMed ID: 24150883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicle growth and deformation in a surfactant solution below the Krafft temperature.
    Kawabata Y; Shinoda T; Kato T
    Phys Chem Chem Phys; 2011 Feb; 13(8):3484-90. PubMed ID: 21243142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes.
    Tamba Y; Ohba S; Kubota M; Yoshioka H; Yoshioka H; Yamazaki M
    Biophys J; 2007 May; 92(9):3178-94. PubMed ID: 17293394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles.
    Bagatolli LA; Gratton E
    Biophys J; 1999 Oct; 77(4):2090-101. PubMed ID: 10512829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.