These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28477592)

  • 1. Graph-theoretical evaluation of the inelastic propensity rules for molecules with destructive quantum interference.
    Sýkora R; Novotný T
    J Chem Phys; 2017 May; 146(17):174114. PubMed ID: 28477592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of electron-phonon coupling on quantum interference in polyenes.
    Tsuji Y; Yoshizawa K
    J Chem Phys; 2018 Oct; 149(13):134115. PubMed ID: 30292216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IETS and quantum interference: propensity rules in the presence of an interference feature.
    Lykkebo J; Gagliardi A; Pecchia A; Solomon GC
    J Chem Phys; 2014 Sep; 141(12):124119. PubMed ID: 25273424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Interference, Graphs, Walks, and Polynomials.
    Tsuji Y; Estrada E; Movassagh R; Hoffmann R
    Chem Rev; 2018 May; 118(10):4887-4911. PubMed ID: 29630345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum interference in polyenes.
    Tsuji Y; Hoffmann R; Movassagh R; Datta S
    J Chem Phys; 2014 Dec; 141(22):224311. PubMed ID: 25494753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong overtones modes in inelastic electron tunneling spectroscopy with cross-conjugated molecules: a prediction from theory.
    Lykkebo J; Gagliardi A; Pecchia A; Solomon GC
    ACS Nano; 2013 Oct; 7(10):9183-94. PubMed ID: 24067128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reassessing destructive quantum interference in azulene-based devices.
    Saraiva-Souza A; Smeu M; Guo H
    Phys Chem Chem Phys; 2020 Feb; 22(6):3653-3660. PubMed ID: 32002522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing electron-phonon excitations in molecular junctions by quantum interference.
    Bessis C; Della Rocca ML; Barraud C; Martin P; Lacroix JC; Markussen T; Lafarge P
    Sci Rep; 2016 Feb; 6():20899. PubMed ID: 26864735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.
    Liang YY; Chen H; Mizuseki H; Kawazoe Y
    J Chem Phys; 2011 Apr; 134(14):144113. PubMed ID: 21495748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Close relation between quantum interference in molecular conductance and diradical existence.
    Tsuji Y; Hoffmann R; Strange M; Solomon GC
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):E413-9. PubMed ID: 26755578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions.
    Troisi A; Ratner MA
    J Chem Phys; 2006 Dec; 125(21):214709. PubMed ID: 17166042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular spintronics: destructive quantum interference controlled by a gate.
    Saraiva-Souza A; Smeu M; Zhang L; Souza Filho AG; Guo H; Ratner MA
    J Am Chem Soc; 2014 Oct; 136(42):15065-71. PubMed ID: 25264567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study of molecular conduction. II. A Hartree-Fock approach to transmission probability.
    Shimazaki T; Maruyama H; Asai Y; Yamashita K
    J Chem Phys; 2005 Oct; 123(16):164111. PubMed ID: 16268685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum interference and decoherence in single-molecule junctions: how vibrations induce electrical current.
    Härtle R; Butzin M; Rubio-Pons O; Thoss M
    Phys Rev Lett; 2011 Jul; 107(4):046802. PubMed ID: 21867029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Green's function density functional tight-binding (gDFTB) method for molecular electronic conduction.
    Reimers JR; Solomon GC; Gagliardi A; Bilić A; Hush NS; Frauenheim T; Di Carlo A; Pecchia A
    J Phys Chem A; 2007 Jul; 111(26):5692-702. PubMed ID: 17530826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum interference as the source of steric asymmetry and parity propensity rules in NO-rare gas inelastic scattering.
    Gijsbertsen A; Linnartz H; Taatjes CA; Stolte S
    J Am Chem Soc; 2006 Jul; 128(27):8777-89. PubMed ID: 16819871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionality in single-molecule devices: model calculations and applications of the inelastic electron tunneling signal in molecular junctions.
    Dash LK; Ness H; Verstraete MJ; Godby RW
    J Chem Phys; 2012 Feb; 136(6):064708. PubMed ID: 22360216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of inelastic electric current through single molecules.
    Asai Y
    Phys Rev Lett; 2004 Dec; 93(24):246102. PubMed ID: 15697830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface.
    Jiang Z; Wang H; Sanvito S; Hou S
    J Chem Phys; 2015 Dec; 143(23):234709. PubMed ID: 26696072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.