These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28477604)

  • 1. Thiolated gold nanoparticle solvation in near-critical fluids: The role of density, temperature, and topology.
    Yadav HOS; Chakravarty C
    J Chem Phys; 2017 May; 146(17):174902. PubMed ID: 28477604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relating structure, entropy, and energy of solvation of nanoscale solutes: application to gold nanoparticle dispersions.
    Nayar D; Yadav HO; Jabes BS; Chakravarty C
    J Phys Chem B; 2012 Nov; 116(43):13124-32. PubMed ID: 22998098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulations of structures and solvation free energies of passivated gold nanoparticles in supercritical CO(2).
    Yang Z; Yang X; Xu Z; Yang N
    J Chem Phys; 2010 Sep; 133(9):094702. PubMed ID: 20831328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuation-driven anisotropy in effective pair interactions between nanoparticles: thiolated gold nanoparticles in ethane.
    Jabes BS; Yadav HO; Kumar SK; Chakravarty C
    J Chem Phys; 2014 Oct; 141(15):154904. PubMed ID: 25338910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly.
    Yadav HO; Shrivastav G; Agarwal M; Chakravarty C
    J Chem Phys; 2016 Jun; 144(24):244901. PubMed ID: 27369538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancements toward the greener processing of engineered nanomaterials--effect of core size on the dispersibility and transport of gold nanocrystals in near-critical solvents.
    Fernandez CA; Bekhazi JG; Hoppes EM; Wiacek RJ; Fryxell GE; Bays JT; Warner MG; Wang C; Hutchison JE; Addleman RS
    Small; 2009 Apr; 5(8):961-9. PubMed ID: 19242951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation of interaction between passivated gold nanoparticles in supercritical CO2.
    Sun L; Yang X; Wu B; Tang L
    J Chem Phys; 2011 Nov; 135(20):204703. PubMed ID: 22128948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvation structure and dynamics for passivated Au nanoparticle in supercritical CO2: a molecular dynamic simulation.
    Hu Y; Wu B; Xu Z; Yang Z; Yang X
    J Colloid Interface Sci; 2011 Jan; 353(1):22-9. PubMed ID: 20934708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent density effects on the solvation behavior and configurational structure of bare and passivated 38-atom gold nanoparticle in supercritical ethane.
    Lal M; Plummer M; Smith W
    J Phys Chem B; 2006 Oct; 110(42):20879-88. PubMed ID: 17048902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the ligand shell composition on the dispersibility and transport of gold nanocrystals in near-critical solvents.
    Fernandez CA; Bekhazi JG; Hoppes EM; Fryxell GE; Wang C; Bays JT; Warner MG; Wiacek RJ; Addleman RS
    Langmuir; 2009 May; 25(9):4900-6. PubMed ID: 19256464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature anisotropy at equilibrium reveals nonlocal entropic contributions to interfacial properties.
    Wilhelmsen Ø; Trinh TT; Lervik A
    Phys Rev E; 2018 Jan; 97(1-1):012126. PubMed ID: 29448485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When Like Destabilizes Like: Inverted Solvent Effects in Apolar Nanoparticle Dispersions.
    Monego D; Kister T; Kirkwood N; Doblas D; Mulvaney P; Kraus T; Widmer-Cooper A
    ACS Nano; 2020 May; 14(5):5278-5287. PubMed ID: 32298080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density dependence of the entropy and the solvation shell structure in supercritical water via molecular dynamics simulation.
    Ma H
    J Chem Phys; 2012 Jun; 136(21):214501. PubMed ID: 22697552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape effect on nanoparticle solvation: a comparison of morphometric thermodynamics and microscopic theories.
    Jin Z; Kim J; Wu J
    Langmuir; 2012 May; 28(17):6997-7006. PubMed ID: 22500946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion solvation in a water-urea mixture.
    Yamazaki T; Kovalenko A; Murashov VV; Patey GN
    J Phys Chem B; 2010 Jan; 114(1):613-9. PubMed ID: 19947642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculations of solute and solvent entropies from molecular dynamics simulations.
    Carlsson J; Aqvist J
    Phys Chem Chem Phys; 2006 Dec; 8(46):5385-95. PubMed ID: 17119645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of solvation dynamics and anisotropy decay in a protein: ANS in bovine serum albumin.
    Sahu K; Mondal SK; Ghosh S; Roy D; Bhattacharyya K
    J Chem Phys; 2006 Mar; 124(12):124909. PubMed ID: 16599727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable solvation effects on the size-selective fractionation of metal nanoparticles in CO2 gas-expanded solvents.
    Anand M; McLeod MC; Bell PW; Roberts CB
    J Phys Chem B; 2005 Dec; 109(48):22852-9. PubMed ID: 16853977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.