These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28477604)

  • 41. Phase behavior of polymer/nanoparticle blends near a substrate.
    McGarrity ES; Frischknecht AL; Mackay ME
    J Chem Phys; 2008 Apr; 128(15):154904. PubMed ID: 18433274
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural modeling of HCV NS3/4A serine protease drug-resistance mutations using end-point continuum solvation and side-chain flexibility calculations.
    Hotiana HA; Haider MK
    J Chem Inf Model; 2013 Feb; 53(2):435-51. PubMed ID: 23305404
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoparticle induced miscibility in LCST polymer blends: critically assessing the enthalpic and entropic effects.
    Xavier P; Rao P; Bose S
    Phys Chem Chem Phys; 2016 Jan; 18(1):47-64. PubMed ID: 26601893
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solvent effects on ligand binding to a serine protease.
    Gopal SM; Klumpers F; Herrmann C; Schäfer LV
    Phys Chem Chem Phys; 2017 May; 19(17):10753-10766. PubMed ID: 28116375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Density functional theory for protein transfer free energy.
    Mills EA; Plotkin SS
    J Phys Chem B; 2013 Oct; 117(42):13278-90. PubMed ID: 23944753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of nonadditive interactions on ion solvation at the water/vapor interface: a molecular dynamics study.
    Yagasaki T; Saito S; Ohmine I
    J Phys Chem A; 2010 Dec; 114(48):12573-84. PubMed ID: 21077653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solvation thermodynamics: theory and applications.
    Ben-Amotz D; Raineri FO; Stell G
    J Phys Chem B; 2005 Apr; 109(14):6866-78. PubMed ID: 16851773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures.
    Thompson D; Hermes JP; Quinn AJ; Mayor M
    ACS Nano; 2012 Apr; 6(4):3007-17. PubMed ID: 22432786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solvation dynamics of C153 in supercritical fluoroform: a simulation study based on two-site and five-site models of the solvent.
    Ingrosso F; Ladanyi BM
    J Phys Chem B; 2006 May; 110(20):10120-9. PubMed ID: 16706473
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energetic contributions from the cation and anion to the stability of carbon dioxide dissolved in imidazolium-based ionic liquids.
    Ishizuka R; Matubayasi N; Tu KM; Umebayashi Y
    J Phys Chem B; 2015 Jan; 119(4):1579-87. PubMed ID: 25569671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Between-species variation in the kinetic stability of TIM proteins linked to solvation-barrier free energies.
    Costas M; Rodríguez-Larrea D; De Maria L; Borchert TV; Gómez-Puyou A; Sanchez-Ruiz JM
    J Mol Biol; 2009 Jan; 385(3):924-37. PubMed ID: 18992756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extended solvent-contact model for protein solvation: test cases for dipeptides.
    Choi H; Kang H; Park H
    J Mol Graph Model; 2013 May; 42():50-9. PubMed ID: 23548585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function.
    Subbotina JO; Johannes J; Lev B; Noskov SY
    J Phys Chem B; 2010 May; 114(19):6401-8. PubMed ID: 20411978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Network rigidity at finite temperature: relationships between thermodynamic stability, the nonadditivity of entropy, and cooperativity in molecular systems.
    Jacobs DJ; Dallakyan S; Wood GG; Heckathorne A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061109. PubMed ID: 14754182
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative analysis of thiolated ligand exchange on gold nanoparticles monitored by 1H NMR spectroscopy.
    Smith AM; Marbella LE; Johnston KA; Hartmann MJ; Crawford SE; Kozycz LM; Seferos DS; Millstone JE
    Anal Chem; 2015 Mar; 87(5):2771-8. PubMed ID: 25658511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of gold nanoparticle on stability of the DNA molecule: A study of molecular dynamics simulation.
    Izanloo C
    Nucleosides Nucleotides Nucleic Acids; 2017 Sep; 36(9):571-582. PubMed ID: 28949808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enthalpy-entropy compensation of ionic liquid-type Gemini imidazolium surfactants in aqueous solutions: a free energy perturbation study.
    Liu G; Gu D; Liu H; Ding W; Li Z
    J Colloid Interface Sci; 2011 Jun; 358(2):521-6. PubMed ID: 21481889
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Parameterization of the Hamiltonian Dielectric Solvent (HADES) Reaction-Field Method for the Solvation Free Energies of Amino Acid Side-Chain Analogs.
    Zachmann M; Mathias G; Antes I
    Chemphyschem; 2015 Jun; 16(8):1739-49. PubMed ID: 25820235
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Incorporating the excluded solvent volume and surface charges for computing solvation free energy.
    Yang PK
    J Comput Chem; 2014 Jan; 35(1):62-9. PubMed ID: 24129882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.