These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 2847778)
1. Malate synthase: proof of a stepwise Claisen condensation using the double-isotope fractionation test. Clark JD; O'Keefe SJ; Knowles JR Biochemistry; 1988 Aug; 27(16):5961-71. PubMed ID: 2847778 [TBL] [Abstract][Full Text] [Related]
2. The apparent malate synthase activity of Rhodobacter sphaeroides is due to two paralogous enzymes, (3S)-Malyl-coenzyme A (CoA)/{beta}-methylmalyl-CoA lyase and (3S)- Malyl-CoA thioesterase. Erb TJ; Frerichs-Revermann L; Fuchs G; Alber BE J Bacteriol; 2010 Mar; 192(5):1249-58. PubMed ID: 20047909 [TBL] [Abstract][Full Text] [Related]
3. Kinetic and chemical mechanism of malate synthase from Mycobacterium tuberculosis. Quartararo CE; Blanchard JS Biochemistry; 2011 Aug; 50(32):6879-87. PubMed ID: 21728344 [TBL] [Abstract][Full Text] [Related]
4. Malate Synthase and β-Methylmalyl Coenzyme A Lyase Reactions in the Methylaspartate Cycle in Haloarcula hispanica. Borjian F; Han J; Hou J; Xiang H; Zarzycki J; Berg IA J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920298 [TBL] [Abstract][Full Text] [Related]
5. Determination of the chemical mechanism of malic enzyme by isotope effects. Edens WA; Urbauer JL; Cleland WW Biochemistry; 1997 Feb; 36(5):1141-7. PubMed ID: 9033405 [TBL] [Abstract][Full Text] [Related]
6. Use of intermediate partitioning to calculate intrinsic isotope effects for the reaction catalyzed by malic enzyme. Grissom CB; Cleland WW Biochemistry; 1985 Feb; 24(4):944-8. PubMed ID: 3995001 [TBL] [Abstract][Full Text] [Related]
7. Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae. Qian J; West AH; Cook PF Biochemistry; 2006 Oct; 45(39):12136-43. PubMed ID: 17002313 [TBL] [Abstract][Full Text] [Related]
8. Ligand binding on to maize (Zea mays) malate synthase: a structural study. Beeckmans S; Khan AS; Kanarek L; Van Driessche E Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):413-21. PubMed ID: 7980399 [TBL] [Abstract][Full Text] [Related]
9. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase. Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966 [TBL] [Abstract][Full Text] [Related]
10. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction. Weiss PM; Gavva SR; Harris BG; Urbauer JL; Cleland WW; Cook PF Biochemistry; 1991 Jun; 30(23):5755-63. PubMed ID: 2043615 [TBL] [Abstract][Full Text] [Related]
11. Biotin-dependent carboxylation catalyzed by transcarboxylase is a stepwise process. O'Keefe SJ; Knowles JR Biochemistry; 1986 Oct; 25(20):6077-84. PubMed ID: 3790507 [TBL] [Abstract][Full Text] [Related]
12. Isotope effect studies of the chemical mechanism of nicotinamide adenine dinucleotide malic enzyme from Crassula. Grissom CB; Willeford KO; Wedding RT Biochemistry; 1987 May; 26(9):2594-6. PubMed ID: 3607035 [TBL] [Abstract][Full Text] [Related]
13. Determination of the kinetic and chemical mechanism of malic enzyme using (2R,3R)-erythro-fluoromalate as a slow alternate substrate. Urbauer JL; Bradshaw DE; Cleland WW Biochemistry; 1998 Dec; 37(51):18026-31. PubMed ID: 9922171 [TBL] [Abstract][Full Text] [Related]
14. Isotope effect studies of the chemical mechanism of pig heart NADP isocitrate dehydrogenase. Grissom CB; Cleland WW Biochemistry; 1988 Apr; 27(8):2934-43. PubMed ID: 3401457 [TBL] [Abstract][Full Text] [Related]
15. 3-hydroxy-3-methylglutaryl-coenzyme A synthase reaction intermediates: detection of a covalent tetrahedral adduct by differential isotope shift 13C nuclear magnetic resonance spectroscopy. Vinarov DA; Miziorko HM Biochemistry; 2000 Mar; 39(12):3360-8. PubMed ID: 10727229 [TBL] [Abstract][Full Text] [Related]
17. The use of isotope effects to determine enzyme mechanisms. Cleland WW Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561 [TBL] [Abstract][Full Text] [Related]
18. Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of D-malate with both NAD and thio-NAD. Karsten WE; Tipton PA; Cook PF Biochemistry; 2002 Oct; 41(40):12193-9. PubMed ID: 12356321 [TBL] [Abstract][Full Text] [Related]
19. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Qian J; Khandogin J; West AH; Cook PF Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686 [TBL] [Abstract][Full Text] [Related]
20. Crotonase-catalyzed beta-elimination is concerted: a double isotope effect study. Bahnson BJ; Anderson VE Biochemistry; 1991 Jun; 30(24):5894-906. PubMed ID: 2043630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]