These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28477804)

  • 41. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells.
    Song Y; Guan R; Lyu F; Kang T; Wu Y; Chen X
    Mutat Res; 2014 Nov; 769():113-8. PubMed ID: 25771730
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity.
    Kao YY; Chen YC; Cheng TJ; Chiung YM; Liu PS
    Toxicol Sci; 2012 Feb; 125(2):462-72. PubMed ID: 22112499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative prediction of mixture toxicity of AgNO
    Baek MJ; Son J; Park J; Seol Y; Sung B; Kim YJ
    Sci Technol Adv Mater; 2020 Jun; 21(1):333-345. PubMed ID: 32939159
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria.
    Wang YW; Cao A; Jiang Y; Zhang X; Liu JH; Liu Y; Wang H
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2791-8. PubMed ID: 24495147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contrasting toxicity of polystyrene nanoplastics to the rotifer Brachionus koreanus in the presence of zinc oxide nanoparticles and zinc ions.
    Lai RWS; Zhou GJ; Kang HM; Jeong CB; Djurišić AB; Lee JS; Leung KMY
    Aquat Toxicol; 2022 Dec; 253():106332. PubMed ID: 36288675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells.
    Kumar A; Pandey AK; Singh SS; Shanker R; Dhawan A
    Chemosphere; 2011 May; 83(8):1124-32. PubMed ID: 21310462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli.
    Pagnout C; Jomini S; Dadhwal M; Caillet C; Thomas F; Bauda P
    Colloids Surf B Biointerfaces; 2012 Apr; 92():315-21. PubMed ID: 22218337
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo.
    Saptarshi SR; Feltis BN; Wright PF; Lopata AL
    J Nanobiotechnology; 2015 Feb; 13():6. PubMed ID: 25645871
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of humic acid on the stability and bacterial toxicity of zinc oxide nanoparticles in water.
    Akhil K; Chandran P; Sudheer Khan S
    J Photochem Photobiol B; 2015 Dec; 153():289-95. PubMed ID: 26496792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparticles under solar simulated light and visible light irradiation.
    Pathakoti K; Morrow S; Han C; Pelaez M; He X; Dionysiou DD; Hwang HM
    Environ Sci Technol; 2013 Sep; 47(17):9988-96. PubMed ID: 23906338
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CdO nanoparticle toxicity on growth, morphology, and cell division in Escherichia coli.
    Hossain ST; Mukherjee SK
    Langmuir; 2012 Dec; 28(48):16614-22. PubMed ID: 23137198
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: does size matter?
    Santo N; Fascio U; Torres F; Guazzoni N; Tremolada P; Bettinetti R; Mantecca P; Bacchetta R
    Water Res; 2014 Apr; 53():339-50. PubMed ID: 24531030
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic effects of zinc oxide nanoparticles and Fatty acids on toxicity to caco-2 cells.
    Cao Y; Roursgaard M; Kermanizadeh A; Loft S; Møller P
    Int J Toxicol; 2015; 34(1):67-76. PubMed ID: 25421740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach.
    Zhou H; Wang X; Zhou Y; Yao H; Ahmad F
    Anal Bioanal Chem; 2014 Jun; 406(15):3689-95. PubMed ID: 24752692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles.
    Hsiao IL; Huang YJ
    Chem Res Toxicol; 2011 Mar; 24(3):303-13. PubMed ID: 21341804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toxicological assessment of TiO2 nanoparticles by recombinant Escherichia coli bacteria.
    Jiang G; Shen Z; Niu J; Bao Y; Chen J; He T
    J Environ Monit; 2011 Jan; 13(1):42-8. PubMed ID: 21127813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7.
    Liu Y; He L; Mustapha A; Li H; Hu ZQ; Lin M
    J Appl Microbiol; 2009 Oct; 107(4):1193-201. PubMed ID: 19486396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli.
    Kumar A; Pandey AK; Singh SS; Shanker R; Dhawan A
    Free Radic Biol Med; 2011 Nov; 51(10):1872-81. PubMed ID: 21920432
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors.
    Tong T; Binh CT; Kelly JJ; Gaillard JF; Gray KA
    Water Res; 2013 May; 47(7):2352-62. PubMed ID: 23466221
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal oxide nanoparticles resonate to ammonium removal through influencing Mg
    Huang X; Wang Y; Ni J; Xie D; Li Z
    Bioresour Technol; 2020 Jan; 296():122339. PubMed ID: 31744667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.