These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28477826)

  • 21. Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite.
    Fan JX; Wang YJ; Fan TT; Dang F; Zhou DM
    Chemosphere; 2016 Mar; 147():44-51. PubMed ID: 26761596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils.
    Filipe OM; Costa CA; Vidal MM; Santos EB
    Chemosphere; 2013 Jan; 90(2):432-40. PubMed ID: 22951356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soil pH and anion abundance affects on copper adsorption.
    Alva AK; Baugh TJ; Sajwan KS; Paramasivam S
    J Environ Sci Health B; 2004; 39(5-6):903-10. PubMed ID: 15620095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling oxyanion adsorption on ferralic soil, part 1: parameter validation with phosphate ion.
    Pérez C; Antelo J; Fiol S; Arce F
    Environ Toxicol Chem; 2014 Oct; 33(10):2208-16. PubMed ID: 24838985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption and desorption of cadmium by goethite pretreated with phosphate.
    Wang K; Xing B
    Chemosphere; 2002 Aug; 48(7):665-70. PubMed ID: 12201196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles.
    Liu R; Zhao D
    Chemosphere; 2007 Aug; 68(10):1867-76. PubMed ID: 17462708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands.
    Buerge-Weirich D; Hari R; Xue H; Behra P; Sigg L
    Environ Sci Technol; 2002 Feb; 36(3):328-36. PubMed ID: 11871545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aging shapes the distribution of copper in soil aggregate size fractions.
    Li Q; Du H; Chen W; Hao J; Huang Q; Cai P; Feng X
    Environ Pollut; 2018 Feb; 233():569-576. PubMed ID: 29102887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of o-phenylenediamine on Cu adsorption and desorption in red soil and its uptake by paddy rice (Oryza sativa).
    Wang SQ; Zhou DM; Wang YJ; Chen HM
    Chemosphere; 2003 Apr; 51(2):77-83. PubMed ID: 12586140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Cu distribution in clay-sized soil aggregates by NanoSIMS and micro-XRF.
    Li Q; Hu X; Hao J; Chen W; Cai P; Huang Q
    Chemosphere; 2020 Jun; 249():126143. PubMed ID: 32062557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term Cu stabilization and biomass yields of Giant reed and poplar after adding a biochar, alone or with iron grit, into a contaminated soil from a wood preservation site.
    Oustriere N; Marchand L; Lottier N; Motelica M; Mench M
    Sci Total Environ; 2017 Feb; 579():620-627. PubMed ID: 27887831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.
    Tao L; Zhu ZK; Li FB; Wang SL
    Chemosphere; 2017 Nov; 187():43-51. PubMed ID: 28834771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competitive binding of Cd, Ni and Cu on goethite organo-mineral composites made with soil bacteria.
    Du H; Huang Q; Peacock CL; Tie B; Lei M; Liu X; Wei X
    Environ Pollut; 2018 Dec; 243(Pt A):444-452. PubMed ID: 30216877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil.
    Ottosen LM; Lepkova K; Kubal M
    J Hazard Mater; 2006 Sep; 137(1):113-20. PubMed ID: 16533561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms.
    Uchimiya M; Klasson KT; Wartelle LH; Lima IM
    Chemosphere; 2011 Mar; 82(10):1438-47. PubMed ID: 21190718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of copper and aluminum on the adsorption of sulfathiazole and tylosin on peat and soil.
    Pei Z; Yang S; Li L; Li C; Zhang S; Shan XQ; Wen B; Guo B
    Environ Pollut; 2014 Jan; 184():579-85. PubMed ID: 24201036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mineral and chemical changes of sediments after Cu sorption and then desorption induced by synthetic root exudate.
    Kanbar HJ; Kaouk M
    Chemosphere; 2019 Dec; 236():124393. PubMed ID: 31545196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of bacteria in the adsorption and binding of DNA on soil colloids and minerals.
    Cai P; Zhu J; Huang Q; Fang L; Liang W; Chen W
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):26-30. PubMed ID: 19056251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.