BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28478229)

  • 1. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy.
    Mishra M; Kowluru RA
    Biochim Biophys Acta Mol Basis Dis; 2017 Jul; 1863(7):1761-1769. PubMed ID: 28478229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy.
    Mishra M; Flaga J; Kowluru RA
    J Cell Physiol; 2016 Aug; 231(8):1709-18. PubMed ID: 26599598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy.
    Kowluru RA; Santos JM; Zhong Q
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(9):5653-60. PubMed ID: 24894401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1.
    Kowluru RA; Mishra M; Kumar B
    Exp Eye Res; 2016 Jun; 147():72-77. PubMed ID: 27109029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy.
    Kowluru RA; Shan Y
    Graefes Arch Clin Exp Ophthalmol; 2017 May; 255(5):955-962. PubMed ID: 28124145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation.
    Kauppinen TM; Gan L; Swanson RA
    Biochim Biophys Acta; 2013 Aug; 1833(8):1985-91. PubMed ID: 23597856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosstalk Between Histone and DNA Methylation in Regulation of Retinal Matrix Metalloproteinase-9 in Diabetes.
    Duraisamy AJ; Mishra M; Kowluru RA
    Invest Ophthalmol Vis Sci; 2017 Dec; 58(14):6440-6448. PubMed ID: 29261844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB.
    Zheng L; Szabó C; Kern TS
    Diabetes; 2004 Nov; 53(11):2960-7. PubMed ID: 15504977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abrogation of MMP-9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage.
    Kowluru RA; Mohammad G; dos Santos JM; Zhong Q
    Diabetes; 2011 Nov; 60(11):3023-33. PubMed ID: 21933988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy.
    Zhong Q; Kowluru RA
    Diabetes; 2013 Jul; 62(7):2559-68. PubMed ID: 23423566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of MMP9 overexpression and its role in emphysema pathogenesis of Smad3-deficient mice.
    Xu B; Chen H; Xu W; Zhang W; Buckley S; Zheng SG; Warburton D; Kolb M; Gauldie J; Shi W
    Am J Physiol Lung Cell Mol Physiol; 2012 Jul; 303(2):L89-96. PubMed ID: 22610349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP-1: Involvement of the ras dependent pathway.
    Moon SK; Cha BY; Kim CH
    J Cell Physiol; 2004 Mar; 198(3):417-27. PubMed ID: 14755547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sirt1: A Guardian of the Development of Diabetic Retinopathy.
    Mishra M; Duraisamy AJ; Kowluru RA
    Diabetes; 2018 Apr; 67(4):745-754. PubMed ID: 29311218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the regimen of Gaoshan Hongjingtian on the mechanism of poly (ADP-ribose) polymerase regulation of nuclear factor kappa B in the experimental diabetic retinopathy.
    Zhao HS; Shi XY; Wei WB; Wang NL
    Chin Med J (Engl); 2013; 126(9):1693-9. PubMed ID: 23652053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms involved in enhancement of matrix metalloproteinase-9 expression in macrophages by interleukin-33.
    Ariyoshi W; Okinaga T; Chaweewannakorn W; Akifusa S; Nisihara T
    J Cell Physiol; 2017 Dec; 232(12):3481-3495. PubMed ID: 28105703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-кB, and AP-1 pathways in human endothelial cells.
    Lian S; Xia Y; Khoi PN; Ung TT; Yoon HJ; Kim NH; Kim KK; Jung YD
    Toxicology; 2015 Dec; 338():104-16. PubMed ID: 26514923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NFκB- and AP-1-mediated DNA looping regulates matrix metalloproteinase-9 transcription in TNF-α-treated human leukemia U937 cells.
    Chen YJ; Chang LS
    Biochim Biophys Acta; 2015 Oct; 1849(10):1248-59. PubMed ID: 26260845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis.
    Martin-Oliva D; Aguilar-Quesada R; O'valle F; Muñoz-Gámez JA; Martínez-Romero R; García Del Moral R; Ruiz de Almodóvar JM; Villuendas R; Piris MA; Oliver FJ
    Cancer Res; 2006 Jun; 66(11):5744-56. PubMed ID: 16740713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy.
    Duraisamy AJ; Mishra M; Kowluru A; Kowluru RA
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):4831-4840. PubMed ID: 30347077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders.
    Kauppinen A; Suuronen T; Ojala J; Kaarniranta K; Salminen A
    Cell Signal; 2013 Oct; 25(10):1939-48. PubMed ID: 23770291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.