These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28478285)

  • 1. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel.
    Tu L; Deutsch C
    J Mol Biol; 2017 Jun; 429(11):1722-1732. PubMed ID: 28478285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A folding zone in the ribosomal exit tunnel for Kv1.3 helix formation.
    Tu LW; Deutsch C
    J Mol Biol; 2010 Mar; 396(5):1346-60. PubMed ID: 20060838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome.
    Tu L; Khanna P; Deutsch C
    J Mol Biol; 2014 Jan; 426(1):185-98. PubMed ID: 24055377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tertiary interactions within the ribosomal exit tunnel.
    Kosolapov A; Deutsch C
    Nat Struct Mol Biol; 2009 Apr; 16(4):405-11. PubMed ID: 19270700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure acquisition of the T1 domain of Kv1.3 during biogenesis.
    Kosolapov A; Tu L; Wang J; Deutsch C
    Neuron; 2004 Oct; 44(2):295-307. PubMed ID: 15473968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tertiary and quaternary structure formation of voltage-gated potassium channels.
    Robinson JM; Kosolapov A; Deutsch C
    Methods Mol Biol; 2006; 337():41-52. PubMed ID: 16929937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A switch from α-helical to β-strand conformation during co-translational protein folding.
    Agirrezabala X; Samatova E; Macher M; Liutkute M; Maiti M; Gil-Carton D; Novacek J; Valle M; Rodnina MV
    EMBO J; 2022 Feb; 41(4):e109175. PubMed ID: 34994471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel.
    Kolář MH; Nagy G; Kunkel J; Vaiana SM; Bock LV; Grubmüller H
    Nucleic Acids Res; 2022 Feb; 50(4):2258-2269. PubMed ID: 35150281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small protein domains fold inside the ribosome exit tunnel.
    Marino J; von Heijne G; Beckmann R
    FEBS Lett; 2016 Mar; 590(5):655-60. PubMed ID: 26879042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How the ribosome shapes cotranslational protein folding.
    Samatova E; Komar AA; Rodnina MV
    Curr Opin Struct Biol; 2024 Feb; 84():102740. PubMed ID: 38071940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding zones inside the ribosomal exit tunnel.
    Lu J; Deutsch C
    Nat Struct Mol Biol; 2005 Dec; 12(12):1123-9. PubMed ID: 16299515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Alpha to Beta - a co-translational way to fold?
    Komar AA
    Cell Cycle; 2022 Aug; 21(16):1663-1666. PubMed ID: 35400283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient tertiary structure formation within the ribosome exit port.
    O'Brien EP; Hsu ST; Christodoulou J; Vendruscolo M; Dobson CM
    J Am Chem Soc; 2010 Dec; 132(47):16928-37. PubMed ID: 21062068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotranslational Folding of Proteins on the Ribosome.
    Liutkute M; Samatova E; Rodnina MV
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31936054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins.
    Woolhead CA; McCormick PJ; Johnson AE
    Cell; 2004 Mar; 116(5):725-36. PubMed ID: 15006354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotranslational Protein Folding inside the Ribosome Exit Tunnel.
    Nilsson OB; Hedman R; Marino J; Wickles S; Bischoff L; Johansson M; Müller-Lucks A; Trovato F; Puglisi JD; O'Brien EP; Beckmann R; von Heijne G
    Cell Rep; 2015 Sep; 12(10):1533-40. PubMed ID: 26321634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradual compaction of the nascent peptide during cotranslational folding on the ribosome.
    Liutkute M; Maiti M; Samatova E; Enderlein J; Rodnina MV
    Elife; 2020 Oct; 9():. PubMed ID: 33112737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.
    Zhao T; Chen YM; Li Y; Wang J; Chen S; Gao N; Qian W
    Genome Biol; 2021 Jan; 22(1):16. PubMed ID: 33402206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane but not soluble helices fold inside the ribosome tunnel.
    Bañó-Polo M; Baeza-Delgado C; Tamborero S; Hazel A; Grau B; Nilsson I; Whitley P; Gumbart JC; von Heijne G; Mingarro I
    Nat Commun; 2018 Dec; 9(1):5246. PubMed ID: 30531789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure formation of a transmembrane segment in Kv channels.
    Lu J; Deutsch C
    Biochemistry; 2005 Jun; 44(23):8230-43. PubMed ID: 15938612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.