These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 28478365)
1. High abundance of protein-like fluorescence in the Amerasian Basin of Arctic Ocean: Potential implication of a fall phytoplankton bloom. Chen M; Nam SI; Kim JH; Kwon YJ; Hong S; Jung J; Shin KH; Hur J Sci Total Environ; 2017 Dec; 599-600():355-363. PubMed ID: 28478365 [TBL] [Abstract][Full Text] [Related]
3. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Horvat C; Jones DR; Iams S; Schroeder D; Flocco D; Feltham D Sci Adv; 2017 Mar; 3(3):e1601191. PubMed ID: 28435859 [TBL] [Abstract][Full Text] [Related]
4. Variability in spring phytoplankton blooms associated with ice retreat timing in the Pacific Arctic from 2003-2019. Waga H; Eicken H; Hirawake T; Fukamachi Y PLoS One; 2021; 16(12):e0261418. PubMed ID: 34914776 [TBL] [Abstract][Full Text] [Related]
5. Bottom-associated phytoplankton bloom and its expansion in the Arctic Ocean. Shiozaki T; Fujiwara A; Sugie K; Nishino S; Makabe A; Harada N Glob Chang Biol; 2022 Dec; 28(24):7286-7295. PubMed ID: 36164979 [TBL] [Abstract][Full Text] [Related]
6. Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate. Balaguru K; Doney SC; Bianucci L; Rasch PJ; Leung LR; Yoon JH; Lima ID PLoS One; 2018; 13(1):e0191509. PubMed ID: 29370224 [TBL] [Abstract][Full Text] [Related]
7. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Neukermans G; Oziel L; Babin M Glob Chang Biol; 2018 Jun; 24(6):2545-2553. PubMed ID: 29394007 [TBL] [Abstract][Full Text] [Related]
8. Bio-optical evidence for increasing Orkney A; Platt T; Narayanaswamy BE; Kostakis I; Bouman HA Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190357. PubMed ID: 32862820 [TBL] [Abstract][Full Text] [Related]
9. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Assmy P; Fernández-Méndez M; Duarte P; Meyer A; Randelhoff A; Mundy CJ; Olsen LM; Kauko HM; Bailey A; Chierici M; Cohen L; Doulgeris AP; Ehn JK; Fransson A; Gerland S; Hop H; Hudson SR; Hughes N; Itkin P; Johnsen G; King JA; Koch BP; Koenig Z; Kwasniewski S; Laney SR; Nicolaus M; Pavlov AK; Polashenski CM; Provost C; Rösel A; Sandbu M; Spreen G; Smedsrud LH; Sundfjord A; Taskjelle T; Tatarek A; Wiktor J; Wagner PM; Wold A; Steen H; Granskog MA Sci Rep; 2017 Jan; 7():40850. PubMed ID: 28102329 [TBL] [Abstract][Full Text] [Related]
10. Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea. Priyaja P; Dwivedi R; Sini S; Hatha M; Saravanane N; Sudhakar M Environ Monit Assess; 2016 Dec; 188(12):662. PubMed ID: 27837363 [TBL] [Abstract][Full Text] [Related]
11. Seasonal patterns and bloom dynamics of phytoplankton based on satellite-derived chlorophyll-a in the eastern yellow sea. Kim S; Lee D; Kim M; Jang HK; Park S; Kim Y; Kim J; Park JW; Joo H; Lee SH Mar Environ Res; 2024 Jul; 199():106605. PubMed ID: 38878346 [TBL] [Abstract][Full Text] [Related]
12. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean. Kahru M; Lee Z; Mitchell BG; Nevison CD Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881759 [TBL] [Abstract][Full Text] [Related]
13. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Barnes DKA Glob Chang Biol; 2017 Dec; 23(12):5083-5091. PubMed ID: 28643454 [TBL] [Abstract][Full Text] [Related]
14. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Dierssen HM Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17073-8. PubMed ID: 20861445 [TBL] [Abstract][Full Text] [Related]
15. Nutrient sources, phytoplankton blooms, and hypoxia along the Chinese coast in the East China Sea: Insight from summer 2014. Chen CC; Chou WC; Hung CC; Gong GC Mar Pollut Bull; 2024 Aug; 205():116692. PubMed ID: 38972219 [TBL] [Abstract][Full Text] [Related]
16. Particulate and dissolved fluorescent organic matter fractionation and composition: Abiotic and ecological controls in the Southern Ocean. Cabrera-Brufau M; Marrasé C; Ortega-Retuerta E; Nunes S; Estrada M; Sala MM; Vaqué D; Pérez GL; Simó R; Cermeño P Sci Total Environ; 2022 Oct; 844():156921. PubMed ID: 35760176 [TBL] [Abstract][Full Text] [Related]
17. Smallest algae thrive as the Arctic Ocean freshens. Li WK; McLaughlin FA; Lovejoy C; Carmack EC Science; 2009 Oct; 326(5952):539. PubMed ID: 19900890 [TBL] [Abstract][Full Text] [Related]
18. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. Landa M; Blain S; Christaki U; Monchy S; Obernosterer I ISME J; 2016 Jan; 10(1):39-50. PubMed ID: 26196334 [TBL] [Abstract][Full Text] [Related]
19. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean. Chen M; Jung J; Lee YK; Hur J Sci Total Environ; 2018 Oct; 639():624-632. PubMed ID: 29803036 [TBL] [Abstract][Full Text] [Related]
20. Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Flynn KJ; Clark DR; Mitra A; Fabian H; Hansen PJ; Glibert PM; Wheeler GL; Stoecker DK; Blackford JC; Brownlee C Proc Biol Sci; 2015 Apr; 282(1804):20142604. PubMed ID: 25716793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]