These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
510 related articles for article (PubMed ID: 28478462)
1. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences. Qin JB; Liu Z; Zhang H; Shen C; Wang XC; Tan Y; Wang S; Wu XF; Tian J Med Sci Monit; 2017 May; 23():2168-2178. PubMed ID: 28478462 [TBL] [Abstract][Full Text] [Related]
2. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Togao O; Hiwatashi A; Yamashita K; Kikuchi K; Keupp J; Yoshimoto K; Kuga D; Yoneyama M; Suzuki SO; Iwaki T; Takahashi M; Iihara K; Honda H Eur Radiol; 2017 Feb; 27(2):578-588. PubMed ID: 27003139 [TBL] [Abstract][Full Text] [Related]
3. Investigated diagnostic value of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling and diffusion-weighted imaging in the grading of glioma. Ge X; Wang M; Ma H; Zhu K; Wei X; Li M; Zhai X; Shen Y; Huang X; Hou M; Liu W; Wang M; Wang X Magn Reson Imaging; 2022 Feb; 86():20-27. PubMed ID: 34808303 [TBL] [Abstract][Full Text] [Related]
4. Grading of Glioma: combined diagnostic value of amide proton transfer weighted, arterial spin labeling and diffusion weighted magnetic resonance imaging. Kang XW; Xi YB; Liu TT; Wang N; Zhu YQ; Wang XR; Guo F BMC Med Imaging; 2020 May; 20(1):50. PubMed ID: 32408867 [TBL] [Abstract][Full Text] [Related]
6. Radiomics strategy for glioma grading using texture features from multiparametric MRI. Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085 [TBL] [Abstract][Full Text] [Related]
7. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related]
8. Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading. Su CQ; Lu SS; Han QY; Zhou MD; Hong XN Acta Radiol; 2019 Jun; 60(6):777-787. PubMed ID: 30244590 [TBL] [Abstract][Full Text] [Related]
9. Diagnostic value of apparent diffusion coefficient in differentiating between high-grade gliomas and brain metastases. Caravan I; Ciortea CA; Contis A; Lebovici A Acta Radiol; 2018 May; 59(5):599-605. PubMed ID: 28835111 [TBL] [Abstract][Full Text] [Related]
10. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging. Lin K; Cidan W; Qi Y; Wang X Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379 [TBL] [Abstract][Full Text] [Related]
11. Preoperative grading of supratentorial nonenhancing gliomas by high b-value diffusion-weighted 3 T magnetic resonance imaging. Han H; Han C; Wu X; Zhong S; Zhuang X; Tan G; Wu H J Neurooncol; 2017 May; 133(1):147-154. PubMed ID: 28439776 [TBL] [Abstract][Full Text] [Related]
12. Ki-67 labeling index and the grading of cerebral gliomas by using intravoxel incoherent motion diffusion-weighted imaging and three-dimensional arterial spin labeling magnetic resonance imaging. Wang C; Dong H Acta Radiol; 2020 Aug; 61(8):1057-1063. PubMed ID: 31830431 [TBL] [Abstract][Full Text] [Related]
13. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
14. Classification of low- and high-grade gliomas using radiomic analysis of multiple sequences of MRI brain. Zachariah RM; Priya PS; Pendem S J Cancer Res Ther; 2023; 19(2):435-446. PubMed ID: 37313916 [TBL] [Abstract][Full Text] [Related]
15. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades. Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669 [TBL] [Abstract][Full Text] [Related]
16. Correlation Between Apparent Diffusion Coefficient and the Ki-67 Proliferation Index in Grading Pediatric Glioma. Yao R; Cheng A; Zhang Z; Jin B; Yu H J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):322-328. PubMed ID: 36957971 [TBL] [Abstract][Full Text] [Related]
17. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading. Xie T; Chen X; Fang J; Kang H; Xue W; Tong H; Cao P; Wang S; Yang Y; Zhang W J Magn Reson Imaging; 2018 Apr; 47(4):1099-1111. PubMed ID: 28845594 [TBL] [Abstract][Full Text] [Related]
18. Identification of T2W hypointense ring as a novel noninvasive indicator for glioma grade and IDH genotype. Lu Y; Du N; Fang X; Shu W; Liu W; Xu X; Ye Y; Xiao L; Mao R; Li K; Lin G; Li S Cancer Imaging; 2024 Jun; 24(1):80. PubMed ID: 38943156 [TBL] [Abstract][Full Text] [Related]
19. Comparison between ultra-high and conventional mono b-value DWI for preoperative glioma grading. Hu YC; Yan LF; Sun Q; Liu ZC; Wang SM; Han Y; Tian Q; Sun YZ; Zheng DD; Wang W; Cui GB Oncotarget; 2017 Jun; 8(23):37884-37895. PubMed ID: 28039453 [TBL] [Abstract][Full Text] [Related]