These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 28478667)
1. A Model Sea Urchin Spicule Matrix Protein, rSpSM50, Is a Hydrogelator That Modifies and Organizes the Mineralization Process. Jain G; Pendola M; Huang YC; Gebauer D; Evans JS Biochemistry; 2017 May; 56(21):2663-2675. PubMed ID: 28478667 [TBL] [Abstract][Full Text] [Related]
2. A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels. Jain G; Pendola M; Rao A; Cölfen H; Evans JS Biochemistry; 2016 Aug; 55(31):4410-21. PubMed ID: 27426695 [TBL] [Abstract][Full Text] [Related]
3. Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains. Pendola M; Jain G; Evans JS PLoS One; 2019; 14(10):e0222068. PubMed ID: 31574084 [TBL] [Abstract][Full Text] [Related]
4. Glycosylation Fosters Interactions between Model Sea Urchin Spicule Matrix Proteins. Implications for Embryonic Spiculogenesis and Biomineralization. Jain G; Pendola M; Koutsoumpeli E; Johnson S; Evans JS Biochemistry; 2018 May; 57(21):3032-3035. PubMed ID: 29757633 [TBL] [Abstract][Full Text] [Related]
5. Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation. Pendola M; Jain G; Huang YC; Gebauer D; Evans JS ACS Omega; 2018 Sep; 3(9):11823-11830. PubMed ID: 30320276 [TBL] [Abstract][Full Text] [Related]
6. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization. Rao A; Seto J; Berg JK; Kreft SG; Scheffner M; Cölfen H J Struct Biol; 2013 Aug; 183(2):205-15. PubMed ID: 23796503 [TBL] [Abstract][Full Text] [Related]
7. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization. Mao Y; Satchell PG; Luan X; Diekwisch TG Ann Anat; 2016 Jan; 203():38-46. PubMed ID: 26194158 [TBL] [Abstract][Full Text] [Related]
8. Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo. Huggins LG; Lennarz WJ Dev Growth Differ; 2001 Aug; 43(4):415-24. PubMed ID: 11473548 [TBL] [Abstract][Full Text] [Related]
9. Biomineralization of the spicules of sea urchin embryos. Wilt FH Zoolog Sci; 2002 Mar; 19(3):253-61. PubMed ID: 12125922 [TBL] [Abstract][Full Text] [Related]
10. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis. Urry LA; Hamilton PC; Killian CE; Wilt FH Dev Biol; 2000 Sep; 225(1):201-13. PubMed ID: 10964475 [TBL] [Abstract][Full Text] [Related]
11. Cellular control over spicule formation in sea urchin embryos: A structural approach. Beniash E; Addadi L; Weiner S J Struct Biol; 1999 Mar; 125(1):50-62. PubMed ID: 10196116 [TBL] [Abstract][Full Text] [Related]
12. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule. Peled-Kamar M; Hamilton P; Wilt FH Exp Cell Res; 2002 Jan; 272(1):56-61. PubMed ID: 11740865 [TBL] [Abstract][Full Text] [Related]
13. A nacre protein, n16.3, self-assembles to form protein oligomers that dimensionally limit and organize mineral deposits. Perovic I; Chang EP; Lui M; Rao A; Cölfen H; Evans JS Biochemistry; 2014 Apr; 53(16):2739-48. PubMed ID: 24720254 [TBL] [Abstract][Full Text] [Related]
14. Matrix and mineral in the sea urchin larval skeleton. Wilt FH J Struct Biol; 1999 Jun; 126(3):216-26. PubMed ID: 10475684 [TBL] [Abstract][Full Text] [Related]
15. Pif97, a von Willebrand and Peritrophin Biomineralization Protein, Organizes Mineral Nanoparticles and Creates Intracrystalline Nanochambers. Chang EP; Evans JS Biochemistry; 2015 Sep; 54(34):5348-55. PubMed ID: 26258941 [TBL] [Abstract][Full Text] [Related]
16. An oligomeric C-RING nacre protein influences prenucleation events and organizes mineral nanoparticles. Perovic I; Verch A; Chang EP; Rao A; Cölfen H; Kröger R; Evans JS Biochemistry; 2014 Nov; 53(46):7259-68. PubMed ID: 25355304 [TBL] [Abstract][Full Text] [Related]
17. The dynamics of secretion during sea urchin embryonic skeleton formation. Wilt FH; Killian CE; Hamilton P; Croker L Exp Cell Res; 2008 May; 314(8):1744-52. PubMed ID: 18355808 [TBL] [Abstract][Full Text] [Related]
18. A technique for detecting matrix proteins in the crystalline spicule of the sea urchin embryo. Cho JW; Partin JS; Lennarz WJ Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1282-6. PubMed ID: 8577755 [TBL] [Abstract][Full Text] [Related]
19. Sea Urchin Spicule Matrix Proteins Form Mesoscale "Smart" Hydrogels That Exhibit Selective Ion Interactions. Pendola M; Davidyants A; Jung YS; Evans JS ACS Omega; 2017 Sep; 2(9):6151-6158. PubMed ID: 31457861 [TBL] [Abstract][Full Text] [Related]
20. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton. Kitajima T; Urakami H Dev Growth Differ; 2000 Aug; 42(4):295-306. PubMed ID: 10969729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]