BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28478920)

  • 1. Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury.
    Ohta Y; Hamaguchi A; Ootaki M; Watanabe M; Takeba Y; Iiri T; Matsumoto N; Takenaga M
    Cytotherapy; 2017 Jul; 19(7):839-848. PubMed ID: 28478920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Adipose-Derived Stem/Stromal Cells from Cryopreserved Fat Tissue and Transplantation into Rats with Spinal Cord Injury.
    Ohta Y; Takenaga M; Hamaguchi A; Ootaki M; Takeba Y; Kobayashi T; Watanabe M; Iiri T; Matsumoto N
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29976859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplantation of an adipose stem cell cluster in a spinal cord injury.
    Oh JS; Park IS; Kim KN; Yoon DH; Kim SH; Ha Y
    Neuroreport; 2012 Mar; 23(5):277-82. PubMed ID: 22336872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury.
    Arboleda D; Forostyak S; Jendelova P; Marekova D; Amemori T; Pivonkova H; Masinova K; Sykova E
    Cell Mol Neurobiol; 2011 Oct; 31(7):1113-22. PubMed ID: 21630007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell therapy with adipose tissue-derived stem/stromal cells for elastase-induced pulmonary emphysema in rats.
    Furuya N; Takenaga M; Ohta Y; Tokura Y; Hamaguchi A; Sakamaki A; Kida H; Handa H; Nishine H; Mineshita M; Miyazawa T
    Regen Med; 2012 Jul; 7(4):503-12. PubMed ID: 22817624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats.
    Ban DX; Ning GZ; Feng SQ; Wang Y; Zhou XH; Liu Y; Chen JT
    Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-Transplantation of Adipose Tissue-Derived Stromal Cells and Olfactory Ensheathing Cells for Spinal Cord Injury Repair.
    Gomes ED; Mendes SS; Assunção-Silva RC; Teixeira FG; Pires AO; Anjo SI; Manadas B; Leite-Almeida H; Gimble JM; Sousa N; Lepore AC; Silva NA; Salgado AJ
    Stem Cells; 2018 May; 36(5):696-708. PubMed ID: 29352743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.
    Han X; Yang N; Cui Y; Xu Y; Dang G; Song C
    Neurosci Lett; 2012 Jul; 521(2):136-41. PubMed ID: 22683506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury.
    Zhou Z; Chen Y; Zhang H; Min S; Yu B; He B; Jin A
    Cytotherapy; 2013 Apr; 15(4):434-48. PubMed ID: 23376106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cellular spinal cord scaffold seeded with rat adipose‑derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats.
    Yin H; Jiang T; Deng X; Yu M; Xing H; Ren X
    Mol Med Rep; 2018 Feb; 17(2):2998-3004. PubMed ID: 29257299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury.
    Kang SK; Shin MJ; Jung JS; Kim YG; Kim CH
    Stem Cells Dev; 2006 Aug; 15(4):583-94. PubMed ID: 16978061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation.
    Kim JW; Ha KY; Molon JN; Kim YH
    Spine (Phila Pa 1976); 2013 Aug; 38(17):E1065-74. PubMed ID: 23629485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adipose-derived stem cell spheroid treated with low-level light irradiation accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia.
    Park IS; Chung PS; Ahn JC
    Cytotherapy; 2017 Sep; 19(9):1070-1078. PubMed ID: 28739168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury.
    Ryu HH; Lim JH; Byeon YE; Park JR; Seo MS; Lee YW; Kim WH; Kang KS; Kweon OK
    J Vet Sci; 2009 Dec; 10(4):273-84. PubMed ID: 19934591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats.
    Roh DH; Seo MS; Choi HS; Park SB; Han HJ; Beitz AJ; Kang KS; Lee JH
    Cell Transplant; 2013; 22(9):1577-90. PubMed ID: 23294734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats.
    Chen J; Zhang Z; Liu J; Zhou R; Zheng X; Chen T; Wang L; Huang M; Yang C; Li Z; Yang C; Bai X; Jin D
    J Neurosci Res; 2014 Mar; 92(3):307-17. PubMed ID: 24375695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury.
    Zhou HL; Zhang XJ; Zhang MY; Yan ZJ; Xu ZM; Xu RX
    Neurochem Res; 2016 Oct; 41(10):2708-2718. PubMed ID: 27351200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats.
    Nishio Y; Koda M; Kamada T; Someya Y; Yoshinaga K; Okada S; Harada H; Okawa A; Moriya H; Yamazaki M
    J Neurosurg Spine; 2006 Nov; 5(5):424-33. PubMed ID: 17120892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.