These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 28479062)
1. Structural Insight into Ubiquitin-Like Protein Recognition and Oligomeric States of JAMM/MPN Cao S; Engilberge S; Girard E; Gabel F; Franzetti B; Maupin-Furlow JA Structure; 2017 Jun; 25(6):823-833.e6. PubMed ID: 28479062 [TBL] [Abstract][Full Text] [Related]
2. Ubiquitin-Like Protein SAMP1 and JAMM/MPN+ Metalloprotease HvJAMM1 Constitute a System for Reversible Regulation of Metabolic Enzyme Activity in Archaea. Cao S; Hepowit N; Maupin-Furlow JA PLoS One; 2015; 10(5):e0128399. PubMed ID: 26010867 [TBL] [Abstract][Full Text] [Related]
3. Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea. Fu X; Liu R; Sanchez I; Silva-Sanchez C; Hepowit NL; Cao S; Chen S; Maupin-Furlow J mBio; 2016 May; 7(3):. PubMed ID: 27190215 [TBL] [Abstract][Full Text] [Related]
4. Rhodanese-Like Domain Protein UbaC and Its Role in Ubiquitin-Like Protein Modification and Sulfur Mobilization in Archaea. Hepowit NL; Maupin-Furlow JA J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31085691 [TBL] [Abstract][Full Text] [Related]
5. Assays for ubiquitin-like protein ligation and proteasome function in archaea. Fu X; Adams Z; Maupin-Furlow J Methods Enzymol; 2019; 619():161-178. PubMed ID: 30910020 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase. Bueno AN; Shrestha RK; Ronau JA; Babar A; Sheedlo MJ; Fuchs JE; Paul LN; Das C Biochemistry; 2015 Oct; 54(39):6038-51. PubMed ID: 26368668 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of ubiquitin-like small archaeal modifier protein 1 (SAMP1) from Haloferax volcanii. Jeong YJ; Jeong BC; Song HK Biochem Biophys Res Commun; 2011 Feb; 405(1):112-7. PubMed ID: 21216237 [TBL] [Abstract][Full Text] [Related]
8. Cleavage of molybdopterin synthase MoaD-MoaE linear fusion by JAMM/MPN Yang YM; Won YB; Ji CJ; Kim JH; Ryu SH; Ok YH; Lee JW Biochem Biophys Res Commun; 2018 Jul; 502(1):48-54. PubMed ID: 29777693 [TBL] [Abstract][Full Text] [Related]
9. Enhancing recombinant protein solubility with ubiquitin-like small archeal modifying protein fusion partners. Varga S; Pathare GR; Baka E; Boicu M; Kriszt B; Székács A; Zinzula L; Kukolya J; Nagy I J Microbiol Methods; 2015 Nov; 118():113-22. PubMed ID: 26341610 [TBL] [Abstract][Full Text] [Related]
10. Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Capili AD; Lima CD Curr Opin Struct Biol; 2007 Dec; 17(6):726-35. PubMed ID: 17919899 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic insight into protein modification and sulfur mobilization activities of noncanonical E1 and associated ubiquitin-like proteins of Archaea. Hepowit NL; de Vera IM; Cao S; Fu X; Wu Y; Uthandi S; Chavarria NE; Englert M; Su D; Sӧll D; Kojetin DJ; Maupin-Furlow JA FEBS J; 2016 Oct; 283(19):3567-3586. PubMed ID: 27459543 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional characterization of ubiquitin variant inhibitors for the JAMM-family deubiquitinases STAMBP and STAMBPL1. Guo Y; Liu Q; Mallette E; Caba C; Hou F; Fux J; LaPlante G; Dong A; Zhang Q; Zheng H; Tong Y; Zhang W J Biol Chem; 2021 Oct; 297(4):101107. PubMed ID: 34425109 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for recruiting and shuttling of the spliceosomal deubiquitinase USP4 by SART3. Park JK; Das T; Song EJ; Kim EE Nucleic Acids Res; 2016 Jun; 44(11):5424-37. PubMed ID: 27060135 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the novel lesion-specific endonuclease PfuEndoQ from Pyrococcus furiosus. Miyazono KI; Ishino S; Makita N; Ito T; Ishino Y; Tanokura M Nucleic Acids Res; 2018 May; 46(9):4807-4818. PubMed ID: 29660024 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure of the MPN domain from the COP9 signalosome subunit CSN6. Zhang H; Gao ZQ; Wang WJ; Liu GF; Shtykova EV; Xu JH; Li LF; Su XD; Dong YH FEBS Lett; 2012 Apr; 586(8):1147-53. PubMed ID: 22575649 [TBL] [Abstract][Full Text] [Related]
16. Homo-trimeric structure of the ribonuclease for rRNA processing, FAU-1, from Pyrococcus furiosus. Kawai G; Okada K; Baba S; Sato A; Sakamoto T; Kanai A J Biochem; 2024 May; 175(6):671-676. PubMed ID: 38302756 [TBL] [Abstract][Full Text] [Related]
17. Structure determination of fibrillarin from the hyperthermophilic archaeon Pyrococcus furiosus. Deng L; Starostina NG; Liu ZJ; Rose JP; Terns RM; Terns MP; Wang BC Biochem Biophys Res Commun; 2004 Mar; 315(3):726-32. PubMed ID: 14975761 [TBL] [Abstract][Full Text] [Related]
18. Archaeal JAB1/MPN/MOV34 metalloenzyme (HvJAMM1) cleaves ubiquitin-like small archaeal modifier proteins (SAMPs) from protein-conjugates. Hepowit NL; Uthandi S; Miranda HV; Toniutti M; Prunetti L; Olivarez O; De Vera IM; Fanucci GE; Chen S; Maupin-Furlow JA Mol Microbiol; 2012 Nov; 86(4):971-87. PubMed ID: 22970855 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for dolichylphosphate mannose biosynthesis. Gandini R; Reichenbach T; Tan TC; Divne C Nat Commun; 2017 Jul; 8(1):120. PubMed ID: 28743912 [TBL] [Abstract][Full Text] [Related]
20. Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Kochańczyk T; Nowakowski M; Wojewska D; Kocyła A; Ejchart A; Koźmiński W; Krężel A Sci Rep; 2016 Nov; 6():36346. PubMed ID: 27808280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]