These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 28479356)
1. Quantitative Analysis of Complex Drug-Drug Interactions Between Repaglinide and Cyclosporin A/Gemfibrozil Using Physiologically Based Pharmacokinetic Models With In Vitro Transporter/Enzyme Inhibition Data. Kim SJ; Toshimoto K; Yao Y; Yoshikado T; Sugiyama Y J Pharm Sci; 2017 Sep; 106(9):2715-2726. PubMed ID: 28479356 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Analysis of Complex Drug-Drug Interactions between Cerivastatin and Metabolism/Transport Inhibitors Using Physiologically Based Pharmacokinetic Modeling. Yao Y; Toshimoto K; Kim SJ; Yoshikado T; Sugiyama Y Drug Metab Dispos; 2018 Jul; 46(7):924-933. PubMed ID: 29712725 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the repaglinide concentration increase produced by gemfibrozil and itraconazole based on the inhibition of the hepatic uptake transporter and metabolic enzymes. Kudo T; Hisaka A; Sugiyama Y; Ito K Drug Metab Dispos; 2013 Feb; 41(2):362-71. PubMed ID: 23139378 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide. Varma MV; Lai Y; Kimoto E; Goosen TC; El-Kattan AF; Kumar V Pharm Res; 2013 Apr; 30(4):1188-99. PubMed ID: 23307347 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Rationalization of Gemfibrozil Drug Interactions: Consideration of Transporters-Enzyme Interplay and the Role of Circulating Metabolite Gemfibrozil 1-O-β-Glucuronide. Varma MV; Lin J; Bi YA; Kimoto E; Rodrigues AD Drug Metab Dispos; 2015 Jul; 43(7):1108-18. PubMed ID: 25941268 [TBL] [Abstract][Full Text] [Related]
6. Implications of intercorrelation between hepatic CYP3A4-CYP2C8 enzymes for the evaluation of drug-drug interactions: a case study with repaglinide. Doki K; Darwich AS; Achour B; Tornio A; Backman JT; Rostami-Hodjegan A Br J Clin Pharmacol; 2018 May; 84(5):972-986. PubMed ID: 29381228 [TBL] [Abstract][Full Text] [Related]
7. Cyclosporine markedly raises the plasma concentrations of repaglinide. Kajosaari LI; Niemi M; Neuvonen M; Laitila J; Neuvonen PJ; Backman JT Clin Pharmacol Ther; 2005 Oct; 78(4):388-99. PubMed ID: 16198658 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the impact of substrate selection on in vitro organic anion transporting polypeptide 1B1 inhibition profiles for the prediction of drug-drug interactions. Izumi S; Nozaki Y; Maeda K; Komori T; Takenaka O; Kusuhara H; Sugiyama Y Drug Metab Dispos; 2015 Feb; 43(2):235-47. PubMed ID: 25414411 [TBL] [Abstract][Full Text] [Related]
9. CYP2C8 activity recovers within 96 hours after gemfibrozil dosing: estimation of CYP2C8 half-life using repaglinide as an in vivo probe. Backman JT; Honkalammi J; Neuvonen M; Kurkinen KJ; Tornio A; Niemi M; Neuvonen PJ Drug Metab Dispos; 2009 Dec; 37(12):2359-66. PubMed ID: 19773535 [TBL] [Abstract][Full Text] [Related]
10. Quantitative prediction of repaglinide-rifampicin complex drug interactions using dynamic and static mechanistic models: delineating differential CYP3A4 induction and OATP1B1 inhibition potential of rifampicin. Varma MV; Lin J; Bi YA; Rotter CJ; Fahmi OA; Lam JL; El-Kattan AF; Goosen TC; Lai Y Drug Metab Dispos; 2013 May; 41(5):966-74. PubMed ID: 23393219 [TBL] [Abstract][Full Text] [Related]
11. Reduced physiologically-based pharmacokinetic model of repaglinide: impact of OATP1B1 and CYP2C8 genotype and source of in vitro data on the prediction of drug-drug interaction risk. Gertz M; Tsamandouras N; Säll C; Houston JB; Galetin A Pharm Res; 2014 Sep; 31(9):2367-82. PubMed ID: 24623479 [TBL] [Abstract][Full Text] [Related]
12. Physiologically Based Pharmacokinetic Models for Prediction of Complex CYP2C8 and OATP1B1 (SLCO1B1) Drug-Drug-Gene Interactions: A Modeling Network of Gemfibrozil, Repaglinide, Pioglitazone, Rifampicin, Clarithromycin and Itraconazole. Türk D; Hanke N; Wolf S; Frechen S; Eissing T; Wendl T; Schwab M; Lehr T Clin Pharmacokinet; 2019 Dec; 58(12):1595-1607. PubMed ID: 31129789 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Kajosaari LI; Laitila J; Neuvonen PJ; Backman JT Basic Clin Pharmacol Toxicol; 2005 Oct; 97(4):249-56. PubMed ID: 16176562 [TBL] [Abstract][Full Text] [Related]
14. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. Shitara Y; Hirano M; Sato H; Sugiyama Y J Pharmacol Exp Ther; 2004 Oct; 311(1):228-36. PubMed ID: 15194707 [TBL] [Abstract][Full Text] [Related]
15. Interplay of UDP-Glucuronosyltransferase and CYP2C8 for CYP2C8 Mediated Drug Oxidation and Its Impact on Drug-Drug Interaction Produced by Standardized CYP2C8 Inhibitors, Clopidogrel and Gemfibrozil. Iga K; Kiriyama A Clin Pharmacokinet; 2024 Jan; 63(1):43-56. PubMed ID: 37921907 [TBL] [Abstract][Full Text] [Related]
16. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters. Tornio A; Neuvonen PJ; Niemi M; Backman JT Expert Opin Drug Metab Toxicol; 2017 Jan; 13(1):83-95. PubMed ID: 27548563 [TBL] [Abstract][Full Text] [Related]
17. Estimation of the Contribution of CYP2C8 and CYP3A4 in Repaglinide Metabolism by Human Liver Microsomes Under Various Buffer Conditions. Kudo T; Goda H; Yokosuka Y; Tanaka R; Komatsu S; Ito K J Pharm Sci; 2017 Sep; 106(9):2847-2852. PubMed ID: 28238899 [TBL] [Abstract][Full Text] [Related]
18. Dose-dependent interaction between gemfibrozil and repaglinide in humans: strong inhibition of CYP2C8 with subtherapeutic gemfibrozil doses. Honkalammi J; Niemi M; Neuvonen PJ; Backman JT Drug Metab Dispos; 2011 Oct; 39(10):1977-86. PubMed ID: 21778352 [TBL] [Abstract][Full Text] [Related]
19. Physiologically Based Pharmacokinetic Modeling to Predict Drug-Drug Interactions with Efavirenz Involving Simultaneous Inducing and Inhibitory Effects on Cytochromes. Marzolini C; Rajoli R; Battegay M; Elzi L; Back D; Siccardi M Clin Pharmacokinet; 2017 Apr; 56(4):409-420. PubMed ID: 27599706 [TBL] [Abstract][Full Text] [Related]
20. Physiologically Based Pharmacokinetic (PBPK) Modeling of Pitavastatin and Atorvastatin to Predict Drug-Drug Interactions (DDIs). Duan P; Zhao P; Zhang L Eur J Drug Metab Pharmacokinet; 2017 Aug; 42(4):689-705. PubMed ID: 27858342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]