These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28479473)

  • 1. Using guitar learning to probe the Action Observation Network's response to visuomotor familiarity.
    Gardner T; Aglinskas A; Cross ES
    Neuroimage; 2017 Aug; 156():174-189. PubMed ID: 28479473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic modulation of the action observation network by movement familiarity.
    Gardner T; Goulden N; Cross ES
    J Neurosci; 2015 Jan; 35(4):1561-72. PubMed ID: 25632133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of visual training on predicting complex action sequences.
    Cross ES; Stadler W; Parkinson J; Schütz-Bosbach S; Prinz W
    Hum Brain Mapp; 2013 Feb; 34(2):467-86. PubMed ID: 22102260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociable substrates for body motion and physical experience in the human action observation network.
    Cross ES; Hamilton AF; Kraemer DJ; Kelley WM; Grafton ST
    Eur J Neurosci; 2009 Oct; 30(7):1383-92. PubMed ID: 19788567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term physical training enhances mirror system activation to action observation.
    Brunsdon VEA; Bradford EEF; Smith L; Ferguson HJ
    Soc Neurosci; 2020 Feb; 15(1):98-107. PubMed ID: 31476956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network.
    Kirsch LP; Cross ES
    Cereb Cortex; 2015 Dec; 25(12):4799-811. PubMed ID: 26209850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of the action observation network to physical and observational learning.
    Cross ES; Kraemer DJ; Hamilton AF; Kelley WM; Grafton ST
    Cereb Cortex; 2009 Feb; 19(2):315-26. PubMed ID: 18515297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action prediction in younger versus older adults: neural correlates of motor familiarity.
    Diersch N; Mueller K; Cross ES; Stadler W; Rieger M; Schütz-Bosbach S
    PLoS One; 2013; 8(5):e64195. PubMed ID: 23704980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both novelty and expertise increase action observation network activity.
    Liew SL; Sheng T; Margetis JL; Aziz-Zadeh L
    Front Hum Neurosci; 2013; 7():541. PubMed ID: 24062656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic movement preferentially engages the action observation network.
    Cross ES; Liepelt R; Hamilton AF; Parkinson J; Ramsey R; Stadler W; Prinz W
    Hum Brain Mapp; 2012 Sep; 33(9):2238-54. PubMed ID: 21898675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefrontal involvement in imitation learning of hand actions: effects of practice and expertise.
    Vogt S; Buccino G; Wohlschläger AM; Canessa N; Shah NJ; Zilles K; Eickhoff SB; Freund HJ; Rizzolatti G; Fink GR
    Neuroimage; 2007 Oct; 37(4):1371-83. PubMed ID: 17698372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. I See Your Effort: Force-Related BOLD Effects in an Extended Action Execution-Observation Network Involving the Cerebellum.
    Casiraghi L; Alahmadi AAS; Monteverdi A; Palesi F; Castellazzi G; Savini G; Friston K; Gandini Wheeler-Kingshott CAM; D'Angelo E
    Cereb Cortex; 2019 Mar; 29(3):1351-1368. PubMed ID: 30615116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Through the looking glass: counter-mirror activation following incompatible sensorimotor learning.
    Catmur C; Gillmeister H; Bird G; Liepelt R; Brass M; Heyes C
    Eur J Neurosci; 2008 Sep; 28(6):1208-15. PubMed ID: 18783371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the model's handedness and observer's viewpoint on observational learning.
    Rohbanfard H; Proteau L
    Exp Brain Res; 2011 Oct; 214(4):567-76. PubMed ID: 21915669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid sound-action association effect in human insular cortex.
    Mutschler I; Schulze-Bonhage A; Glauche V; Demandt E; Speck O; Ball T
    PLoS One; 2007 Feb; 2(2):e259. PubMed ID: 17327919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical kinematic processing of executed and observed goal-directed hand actions.
    Marty B; Bourguignon M; Jousmäki V; Wens V; Op de Beeck M; Van Bogaert P; Goldman S; Hari R; De Tiège X
    Neuroimage; 2015 Oct; 119():221-8. PubMed ID: 26123380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbing the action observation network during perception and categorization of actions' goals and grips: state-dependency and virtual lesion TMS effects.
    Jacquet PO; Avenanti A
    Cereb Cortex; 2015 Mar; 25(3):598-608. PubMed ID: 24084126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Object presence modulates activity within the somatosensory component of the action observation network.
    Turella L; Tubaldi F; Erb M; Grodd W; Castiello U
    Cereb Cortex; 2012 Mar; 22(3):668-79. PubMed ID: 21690260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning by observing: the effect of multiple sessions of action-observation training on the spontaneous movement tempo and motor resonance.
    Lagravinese G; Bisio A; Ruggeri P; Bove M; Avanzino L
    Neuropsychologia; 2017 Feb; 96():89-95. PubMed ID: 27769797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.