BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 28479848)

  • 1. Inhibitory effects of
    Wang YL; Gao GP; Wang YQ; Wu Y; Peng ZY; Zhou Q
    Mol Vis; 2017; 23():286-295. PubMed ID: 28479848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway.
    Wang Y; Gao G; Wu Y; Wang Y; Wu X; Zhou Q
    Invest Ophthalmol Vis Sci; 2020 Sep; 61(11):19. PubMed ID: 32926102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization.
    Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y
    Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α.
    Fu YC; Xin ZM
    Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30355648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of TC14012 on alkali burn-induced corneal neovascularization in mice.
    Shen M; Yuan F; Jin J; Yuan Y
    Ophthalmic Res; 2014; 52(1):17-24. PubMed ID: 24853648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upadacitinib inhibits corneal inflammation and neovascularization by suppressing M1 macrophage infiltration in the corneal alkali burn model.
    Yu J; Shen Y; Luo J; Jin J; Li P; Feng P; Guan H
    Int Immunopharmacol; 2023 Mar; 116():109680. PubMed ID: 36739832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KH902, a recombinant human VEGF receptor fusion protein, reduced the level of placental growth factor in alkali burn induced-corneal neovascularization.
    Zhou AY; Bai YJ; Zhao M; Yu WZ; Li XX
    Ophthalmic Res; 2013; 50(3):180-6. PubMed ID: 24008241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inhibitory effect of different concentrations of KH902 eye drops on corneal neovascularization induced by alkali burn.
    Wu Y; Xue C; Lu Y; Huang Z
    Indian J Ophthalmol; 2017 Nov; 65(11):1127-1132. PubMed ID: 29133637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effect of sub-conjunctival tocilizumab on alkali burn induced corneal neovascularization in rats.
    Sari ES; Yazici A; Aksit H; Yay A; Sahin G; Yildiz O; Ermis SS; Seyrek K; Yalcin B
    Curr Eye Res; 2015 Jan; 40(1):48-55. PubMed ID: 24910898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn.
    Yao L; Li ZR; Su WR; Li YP; Lin ML; Zhang WX; Liu Y; Wan Q; Liang D
    PLoS One; 2012; 7(2):e30842. PubMed ID: 22363499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical role of TNF-α-induced macrophage VEGF and iNOS production in the experimental corneal neovascularization.
    Lu P; Li L; Liu G; Baba T; Ishida Y; Nosaka M; Kondo T; Zhang X; Mukaida N
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3516-26. PubMed ID: 22570350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Modeling of Corneal Alkali Injury in the Rat Eye.
    Choi H; Phillips C; Oh JY; Stock EM; Kim DK; Won JK; Fulcher S
    Curr Eye Res; 2017 Oct; 42(10):1348-1357. PubMed ID: 28636415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of mouse alkali burn induced-corneal neovascularization by recombinant adenovirus encoding human vasohibin-1.
    Zhou SY; Xie ZL; Xiao O; Yang XR; Heng BC; Sato Y
    Mol Vis; 2010 Jul; 16():1389-98. PubMed ID: 20680097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization.
    Zhang Z; Ma JX; Gao G; Li C; Luo L; Zhang M; Yang W; Jiang A; Kuang W; Xu L; Chen J; Liu Z
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4062-71. PubMed ID: 16249481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of microRNA 146a on the healing of cornea alkali burn treated with mesenchymal stem cells.
    Luo X; Li J; Yin L; Pan J; Zhang Y; Jiang Z
    Mol Med Rep; 2018 Sep; 18(3):3203-3210. PubMed ID: 30066863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of canstatin in alkali burn-induced corneal neovascularization.
    Wang Y; Yin H; Chen P; Xie L; Wang Y
    Ophthalmic Res; 2011; 46(2):66-72. PubMed ID: 21242701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model.
    Kim JW; Jeong H; Yang MS; Lim CW; Kim B
    Int Immunopharmacol; 2017 Jul; 48():126-134. PubMed ID: 28501766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A siRNA targeting vascular endothelial growth factor-A inhibiting experimental corneal neovascularization.
    Zuo L; Fan Y; Wang F; Gu Q; Xu X
    Curr Eye Res; 2010 May; 35(5):375-84. PubMed ID: 20450250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model.
    Li Q; Hua X; Li L; Zhou X; Tian Y; Deng Y; Zhang M; Yuan X; Chi W
    Cell Commun Signal; 2022 May; 20(1):59. PubMed ID: 35524333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The wound healing effects of vitamin A eye drops after a corneal alkali burn in rats.
    Kim EC; Kim TK; Park SH; Kim MS
    Acta Ophthalmol; 2012 Nov; 90(7):e540-6. PubMed ID: 23106861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.