These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28480464)

  • 1. Breakdown of the Stokes-Einstein water transport through narrow hydrophobic nanotubes.
    Köhler MH; Bordin JR; da Silva LB; Barbosa MC
    Phys Chem Chem Phys; 2017 May; 19(20):12921-12927. PubMed ID: 28480464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity.
    Zaragoza A; Gonzalez MA; Joly L; López-Montero I; Canales MA; Benavides AL; Valeriani C
    Phys Chem Chem Phys; 2019 Jul; 21(25):13653-13667. PubMed ID: 31190039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wettability and confinement size effects on stability of water conveying nanotubes.
    Shaat M; Javed U; Faroughi S
    Sci Rep; 2020 Oct; 10(1):17167. PubMed ID: 33051583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical crossover and breakdown of the Stokes-Einstein relation in confined water and in methanol-diluted bulk water.
    Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Stanley HE; Chen SH
    J Phys Chem B; 2010 Feb; 114(5):1870-8. PubMed ID: 20058894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids.
    Sahu P; Ali SM; Shenoy KT
    J Chem Phys; 2015 Feb; 142(7):074501. PubMed ID: 25702017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water transport through functionalized nanotubes with tunable hydrophobicity.
    Moskowitz I; Snyder MA; Mittal J
    J Chem Phys; 2014 Nov; 141(18):18C532. PubMed ID: 25399197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.
    Mendoza CI; Santamaría-Holek I; Pérez-Madrid A
    J Chem Phys; 2015 Sep; 143(10):104506. PubMed ID: 26374049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Origin of the Breakdown of the Stokes-Einstein Relation in Supercooled Water at Different Temperature-Pressure Conditions.
    Dubey V; Erimban S; Indra S; Daschakraborty S
    J Phys Chem B; 2019 Nov; 123(47):10089-10099. PubMed ID: 31702917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Diffusion in Confined Water: A Comparison between the Dynamics of Supercooled Water in Hydrophobic Carbon Nanotubes and Hydrophilic Porous Silica.
    Fardis M; Karagianni M; Gkoura L; Papavassiliou G
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient.
    Zheng J; Lennon EM; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2005 Jun; 122(21):214702. PubMed ID: 15974757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the water structure and transport in nanotubes with tunable interiors.
    Ruiz L; Wu Y; Keten S
    Nanoscale; 2015 Jan; 7(1):121-32. PubMed ID: 25407508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluidity and phase transitions of water in hydrophobic and hydrophilic nanotubes.
    Shaat M; Zheng Y
    Sci Rep; 2019 Apr; 9(1):5689. PubMed ID: 30952907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The violation of the Stokes-Einstein relation in supercooled water.
    Chen SH; Mallamace F; Mou CY; Broccio M; Corsaro C; Faraone A; Liu L
    Proc Natl Acad Sci U S A; 2006 Aug; 103(35):12974-8. PubMed ID: 16920792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakdown of electroneutrality in nanopores.
    Levy A; de Souza JP; Bazant MZ
    J Colloid Interface Sci; 2020 Nov; 579():162-176. PubMed ID: 32590157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water diffusion inside carbon nanotubes: mutual effects of surface and confinement.
    Zheng YG; Ye HF; Zhang ZQ; Zhang HW
    Phys Chem Chem Phys; 2012 Jan; 14(2):964-71. PubMed ID: 22120002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakdown of the Stokes-Einstein Equation for Solutions of Water in Oil Reverse Micelles.
    Hoffmann MM; Too MD; Vogel M; Gutmann T; Buntkowsky G
    J Phys Chem B; 2020 Oct; 124(41):9115-9125. PubMed ID: 32924487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Controlled Water Flow in Nanotube Membranes.
    Casanova S; Borg MK; Chew YMJ; Mattia D
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1689-1698. PubMed ID: 30543406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion enhancement in core-softened fluid confined in nanotubes.
    Bordin JR; de Oliveira AB; Diehl A; Barbosa MC
    J Chem Phys; 2012 Aug; 137(8):084504. PubMed ID: 22938247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of single-walled silicon carbide nanotubes immersed in water.
    Taghavi F; Javadian S; Hashemianzadeh SM
    J Mol Graph Model; 2013 Jul; 44():33-43. PubMed ID: 23732304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.
    Świergiel J; Bouteiller L; Jadżyn J
    Soft Matter; 2014 Nov; 10(42):8457-63. PubMed ID: 25230766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.