BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28480490)

  • 1. Impact of shipping emissions on ozone levels over Europe: assessing the relative importance of the Standard Nomenclature for Air Pollution (SNAP) categories.
    Tagaris E; Stergiou I; Sotiropoulou RP
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14903-14909. PubMed ID: 28480490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution from shipping emissions to air quality and acid deposition in Europe.
    Derwent RG; Stevenson DS; Doherty RM; Collins WJ; Sanderson MG; Johnson CE; Cofala J; Mechler R; Amann M; Dentener FJ
    Ambio; 2005 Feb; 34(1):54-9. PubMed ID: 15789519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How important are maritime emissions for the air quality: At European and national scale.
    Monteiro A; Russo M; Gama C; Borrego C
    Environ Pollut; 2018 Nov; 242(Pt A):565-575. PubMed ID: 30014934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Arctic air pollution: Sources and impacts.
    Law KS; Roiger A; Thomas JL; Marelle L; Raut JC; Dalsøren S; Fuglestvedt J; Tuccella P; Weinzierl B; Schlager H
    Ambio; 2017 Dec; 46(Suppl 3):453-463. PubMed ID: 29076019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.
    Im U; Poupkou A; Incecik S; Markakis K; Kindap T; Unal A; Melas D; Yenigun O; Topcu S; Odman MT; Tayanc M; Guler M
    Sci Total Environ; 2011 Mar; 409(7):1255-65. PubMed ID: 21257192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower air pollution during COVID-19 lock-down: improving models and methods estimating ozone impacts on crops.
    Dentener F; Emberson L; Galmarini S; Cappelli G; Irimescu A; Mihailescu D; Van Dingenen R; van den Berg M
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2183):20200188. PubMed ID: 32981442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of biogenic emissions with satellite-derived land use and land cover data for air quality modeling of Houston-Galveston ozone nonattainment area.
    Byun DW; Kim S; Czader B; Nowak D; Stetson S; Estes M
    J Environ Manage; 2005 Jun; 75(4):285-301. PubMed ID: 15854724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ship emissions on NO
    Ledoux F; Roche C; Cazier F; Beaugard C; Courcot D
    J Environ Sci (China); 2018 Sep; 71():56-66. PubMed ID: 30195690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the manageable portion of ground-level ozone in the contiguous United States.
    Luo H; Astitha M; Rao ST; Hogrefe C; Mathur R
    J Air Waste Manag Assoc; 2020 Nov; 70(11):1136-1147. PubMed ID: 32749924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of shipping emissions on air pollution and pollutant deposition over the Barents Sea.
    Raut JC; Law KS; Onishi T; Daskalakis N; Marelle L
    Environ Pollut; 2022 Apr; 298():118832. PubMed ID: 35033620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution.
    Silva RA; Adelman Z; Fry MM; West JJ
    Environ Health Perspect; 2016 Nov; 124(11):1776-1784. PubMed ID: 27177206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of natural emissions to ozone and PM2.5 as simulated by the Community Multiscale Air Quality (CMAQ) model.
    Mueller SF; Mallard JW
    Environ Sci Technol; 2011 Jun; 45(11):4817-23. PubMed ID: 21545154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of emissions-driven changes in the oxidation capacity of the atmosphere in Europe.
    Jung D; de la Paz D; Notario A; Borge R
    Sci Total Environ; 2022 Jun; 827():154126. PubMed ID: 35219666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerosol and ozone observations during six cruise campaigns across the Mediterranean basin: temporal, spatial, and seasonal variability.
    Bencardino MM; Pirrone NN; Sprovieri FF
    Environ Sci Pollut Res Int; 2014 Mar; 21(6):4044-62. PubMed ID: 24151024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of air emissions from shipping on marine phytoplankton growth.
    Zhang C; Shi Z; Zhao J; Zhang Y; Yu Y; Mu Y; Yao X; Feng L; Zhang F; Chen Y; Liu X; Shi J; Gao H
    Sci Total Environ; 2021 May; 769():145488. PubMed ID: 33736263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of shipping emissions on four ports of Portugal.
    Nunes RAO; Alvim-Ferraz MCM; Martins FG; Sousa SIV
    Environ Pollut; 2017 Dec; 231(Pt 2):1370-1379. PubMed ID: 28917818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.
    Tie X; Li G; Ying Z; Guenther A; Madronich S
    Sci Total Environ; 2006 Dec; 371(1-3):238-51. PubMed ID: 17027064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating shipping emissions in the region of the Sea of Marmara, Turkey.
    Deniz C; Durmuşoğlu Y
    Sci Total Environ; 2008 Feb; 390(1):255-61. PubMed ID: 17976688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. International trade and air pollution: estimating the economic costs of air emissions from waterborne commerce vessels in the United States.
    Gallagher KP
    J Environ Manage; 2005 Oct; 77(2):99-103. PubMed ID: 15992989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.