BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

687 related articles for article (PubMed ID: 28480539)

  • 1. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.
    Tamura M; Suseela V; Simpson M; Powell B; Tharayil N
    Glob Chang Biol; 2017 Oct; 23(10):4002-4018. PubMed ID: 28480539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems.
    Tamura M; Tharayil N
    New Phytol; 2014 Jul; 203(1):110-24. PubMed ID: 24720813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability.
    Soong JL; Cotrufo MF
    Glob Chang Biol; 2015 Jun; 21(6):2321-33. PubMed ID: 25487951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities.
    Waldrop MP; Firestone MK
    Oecologia; 2004 Jan; 138(2):275-84. PubMed ID: 14614618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems.
    Feng J; He K; Zhang Q; Han M; Zhu B
    Glob Chang Biol; 2022 May; 28(10):3426-3440. PubMed ID: 35092113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland.
    Gruba P; Socha J; Błońska E; Lasota J
    Sci Total Environ; 2015 Jul; 521-522():90-100. PubMed ID: 25829288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term litter manipulation alters soil organic matter turnover in a temperate deciduous forest.
    Wang JJ; Pisani O; Lin LH; Lun OOY; Bowden RD; Lajtha K; Simpson AJ; Simpson MJ
    Sci Total Environ; 2017 Dec; 607-608():865-875. PubMed ID: 28711848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-dependent drivers of soil aggregate carbon across Tibetan alpine grasslands.
    Pan J; Shi J; Tian D; Zhang R; Li Y; He Y; Song L; Wang S; He Y; Yang J; Wei C; Niu S; Wang J
    Sci Total Environ; 2023 Apr; 867():161428. PubMed ID: 36623644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus.
    Spohn M
    Glob Chang Biol; 2020 Aug; 26(8):4169-4177. PubMed ID: 32396708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cover crop functional types differentially alter the content and composition of soil organic carbon in particulate and mineral-associated fractions.
    Zhang Z; Kaye JP; Bradley BA; Amsili JP; Suseela V
    Glob Chang Biol; 2022 Oct; 28(19):5831-5848. PubMed ID: 35713156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grass invasion effects on forest soil carbon depend on landscape-level land use patterns.
    Craig ME; Pearson SM; Fraterrigo JM
    Ecology; 2015 Aug; 96(8):2265-79. PubMed ID: 26405751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.
    Haddix ML; Paul EA; Cotrufo MF
    Glob Chang Biol; 2016 Jun; 22(6):2301-12. PubMed ID: 27142168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils.
    Zhao Q; Thompson AM; Callister SJ; Tfaily MM; Bell SL; Hobbie SE; Hofmockel KS
    Sci Total Environ; 2022 Feb; 806(Pt 1):150514. PubMed ID: 34844300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecosystem consequences of plant life form changes at three sites in the semiarid United States.
    Gill RA; Burke IC
    Oecologia; 1999 Dec; 121(4):551-563. PubMed ID: 28308365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.
    Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C
    Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid soil formation after glacial retreat shaped by spatial patterns of organic matter accrual in microaggregates.
    Schweizer SA; Hoeschen C; Schlüter S; Kögel-Knabner I; Mueller CW
    Glob Chang Biol; 2018 Apr; 24(4):1637-1650. PubMed ID: 29223134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular composition of soil organic matter with land-use change along a bi-continental mean annual temperature gradient.
    Pisani O; Haddix ML; Conant RT; Paul EA; Simpson MJ
    Sci Total Environ; 2016 Dec; 573():470-480. PubMed ID: 27572539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil organic matter molecular composition with long-term detrital alterations is controlled by site-specific forest properties.
    Castañeda-Gómez L; Lajtha K; Bowden R; Mohammed Jauhar FN; Jia J; Feng X; Simpson MJ
    Glob Chang Biol; 2023 Jan; 29(1):243-259. PubMed ID: 36169977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing chemistry and bioactivity of burned vs. decomposed plant litter: different pathways but same result?
    Bonanomi G; Incerti G; Abd El-Gawad AM; Cesarano G; Sarker TC; Saulino L; Lanzotti V; Saracino A; Rego FC; Mazzoleni S
    Ecology; 2018 Jan; 99(1):158-171. PubMed ID: 29065230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.