These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28480601)

  • 1. Current density analysis of electron transport through molecular wires in open quantum systems.
    Nozaki D; Schmidt WG
    J Comput Chem; 2017 Jul; 38(19):1685-1692. PubMed ID: 28480601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions.
    Liu H; Wang N; Zhao J; Guo Y; Yin X; Boey FY; Zhang H
    Chemphyschem; 2008 Jul; 9(10):1416-24. PubMed ID: 18512822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique structural and transport properties of molybdenum chalcohalide nanowires.
    Popov I; Yang T; Berber S; Seifert G; Tománek D
    Phys Rev Lett; 2007 Aug; 99(8):085503. PubMed ID: 17930955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonexponential Length Dependence of Molecular Conductance in Acene-Based Molecular Wires.
    Valdiviezo J; Rocha P; Polakovsky A; Palma JL
    ACS Sens; 2021 Feb; 6(2):477-484. PubMed ID: 33411533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio scrutiny of endohedral C
    Kaur M; Sawhney RS; Engles D
    J Mol Model; 2018 Mar; 24(4):81. PubMed ID: 29502277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes.
    Qian Z; Li R; Hou S; Xue Z; Sanvito S
    J Chem Phys; 2007 Nov; 127(19):194710. PubMed ID: 18035901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green's function formalism coupled with Gaussian broadening of discrete states for quantum transport: application to atomic and molecular wires.
    Tada T; Kondo M; Yoshizawa K
    J Chem Phys; 2004 Oct; 121(16):8050-7. PubMed ID: 15485269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Space Excitation as an Alternative to the Landauer Picture for Nonequilibrium Quantum Transport.
    Lee J; Kim HS; Kim YH
    Adv Sci (Weinh); 2020 Aug; 7(16):2001038. PubMed ID: 32832358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current's Fluctuations through Molecular Wires Composed of Thiophene Rings.
    Ojeda Silva JH; Cortés Peñaranda JC; Gómez Castaño JA; Duque CA
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29641471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics.
    Ojeda JH; Piracón Muñoz LK; Guerra Pinzón JA; Gómez Castaño JA
    RSC Adv; 2020 Aug; 10(53):32127-32136. PubMed ID: 35518157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions.
    Hoy EP; Mazziotti DA; Seideman T
    J Chem Phys; 2017 Nov; 147(18):184110. PubMed ID: 29141419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-Polarized Electron Transport Across Metal-Organic Molecules: A Density Functional Theory Approach.
    Bagrets A
    J Chem Theory Comput; 2013 Jun; 9(6):2801-15. PubMed ID: 26583870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length dependence of electron transport through molecular wires--a first principles perspective.
    Khoo KH; Chen Y; Li S; Quek SY
    Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductance Switching in Expanded Porphyrins through Aromaticity and Topology Changes.
    Stuyver T; Perrin M; Geerlings P; De Proft F; Alonso M
    J Am Chem Soc; 2018 Jan; 140(4):1313-1326. PubMed ID: 29291371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transport behavior of quinoidal heteroacene-based junctions: effective electron-transport pathways and quantum interference.
    Cheng N; Chen F; Durkan C; Wang N; He Y; Zhao J
    Phys Chem Chem Phys; 2018 Nov; 20(45):28860-28870. PubMed ID: 30420983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the contact conductance of anchoring groups in single molecule junctions by molecular design.
    Šebera J; Lindner M; Gasior J; Mészáros G; Fuhr O; Mayor M; Valášek M; Kolivoška V; Hromadová M
    Nanoscale; 2019 Jul; 11(27):12959-12964. PubMed ID: 31259338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum transport in alkane molecular wires: effects of binding modes and anchoring groups.
    Sheng W; Li ZY; Ning ZY; Zhang ZH; Yang ZQ; Guo H
    J Chem Phys; 2009 Dec; 131(24):244712. PubMed ID: 20059104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio thermal transport properties of nanostructures from density functional perturbation theory.
    Calzolari A; Jayasekera T; Kim KW; Nardelli MB
    J Phys Condens Matter; 2012 Dec; 24(49):492204. PubMed ID: 23164749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ghost transmission: How large basis sets can make electron transport calculations worse.
    Herrmann C; Solomon GC; Subotnik JE; Mujica V; Ratner MA
    J Chem Phys; 2010 Jan; 132(2):024103. PubMed ID: 20095659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.