These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28480717)

  • 1. Aggregation-Switching Strategy for Promoting Fluorescent Sensing of Biologically Relevant Species: A Simple Near-Infrared Cyanine Dye Highly Sensitive and Selective for ATP.
    Zhang P; Zhu MS; Luo H; Zhang Q; Guo LE; Li Z; Jiang YB
    Anal Chem; 2017 Jun; 89(11):6210-6215. PubMed ID: 28480717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity.
    Zhang Q; Li S; Fu C; Xiao Y; Zhang P; Ding C
    J Mater Chem B; 2019 Jan; 7(3):443-450. PubMed ID: 32254731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A long-wavelength fluorescent squarylium cyanine dye possessing boronic acid for sensing monosaccharides and glycoproteins with high enhancement in aqueous solution.
    Saito S; Massie TL; Maeda T; Nakazumi H; Colyer CL
    Sensors (Basel); 2012; 12(5):5420-31. PubMed ID: 22778592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of a dimeric carbocyanine dye aggregate with bovine serum albumin in non-aggregated and aggregated forms.
    Patlolla PR; Desai N; Gupta S; Datta B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():256-263. PubMed ID: 30414574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mitochondria-selective near-infrared-emitting fluorescent dye for cellular imaging studies.
    Choi P; Noguchi K; Ishiyama M; Denny WA; Jose J
    Bioorg Med Chem Lett; 2018 Jun; 28(11):2013-2017. PubMed ID: 29731365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-column labeling of gram-positive bacteria with a boronic acid functionalized squarylium cyanine dye for analysis by polymer-enhanced capillary transient isotachophoresis.
    Saito S; Massie TL; Maeda T; Nakazumi H; Colyer CL
    Anal Chem; 2012 Mar; 84(5):2452-8. PubMed ID: 22304241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimethine cyanine dyes as fluorescent probes for amyloid fibrils: The effect of N,N'-substituents.
    Kuperman MV; Chernii SV; Losytskyy MY; Kryvorotenko DV; Derevyanko NO; Slominskii YL; Kovalska VB; Yarmoluk SM
    Anal Biochem; 2015 Sep; 484():9-17. PubMed ID: 25963892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved photostability and fluorescence properties through polyfluorination of a cyanine dye.
    Renikuntla BR; Rose HC; Eldo J; Waggoner AS; Armitage BA
    Org Lett; 2004 Mar; 6(6):909-12. PubMed ID: 15012062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.
    Ouchi K; Colyer CL; Sebaiy M; Zhou J; Maeda T; Nakazumi H; Shibukawa M; Saito S
    Anal Chem; 2015 Feb; 87(3):1933-40. PubMed ID: 25587738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Spectrofluorometric detection of protein with a novel hydrophilic cyanine dye].
    Lin XC; Guo LQ; Lin YX; Xie ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1775-9. PubMed ID: 18051527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein binding-induced surfactant aggregation variation: a new strategy of developing fluorescent aqueous sensor for proteins.
    Hu W; Ding L; Cao J; Liu L; Wei Y; Fang Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4728-36. PubMed ID: 25664917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly selective turn-on near-infrared fluorescent probe for hydrogen sulfide detection and imaging in living cells.
    Wang R; Yu F; Chen L; Chen H; Wang L; Zhang W
    Chem Commun (Camb); 2012 Dec; 48(96):11757-9. PubMed ID: 23111545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between cyanine dye IR-783 and polystyrene nanoparticles in solution.
    Zhang Y; Xu H; Casabianca LB
    Magn Reson Chem; 2018 Nov; 56(11):1054-1060. PubMed ID: 29771468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye.
    Cheng G; Fan J; Sun W; Cao J; Hu C; Peng X
    Chem Commun (Camb); 2014 Jan; 50(8):1018-20. PubMed ID: 24310167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel water-soluble near-infrared cyanine dyes: synthesis, spectral properties, and use in the preparation of internally quenched fluorescent probes.
    Bouteiller C; Clavé G; Bernardin A; Chipon B; Massonneau M; Renard PY; Romieu A
    Bioconjug Chem; 2007; 18(4):1303-17. PubMed ID: 17583926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging.
    Chen H; Lin W; Cui H; Jiang W
    Chemistry; 2015 Jan; 21(2):733-45. PubMed ID: 25388080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation-based fluorescence amplification strategy: "turn-on" sensing of aminoglycosides using near-IR carbocyanine dyes and pre-micellar surfactants.
    Zakharenkova SA; Katkova EA; Doroshenko IA; Kriveleva AS; Lebedeva AN; Vidinchuk TA; Shik AV; Abramchuk SS; Podrugina TA; Beklemishev MK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119109. PubMed ID: 33147554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing of adenosine-5'-triphosphate anion in aqueous solutions and mitochondria by a fluorescent 3-hydroxyflavone dye.
    Yushchenko DA; Vadzyuk OB; Kosterin SO; Duportail G; Mély Y; Pivovarenko VG
    Anal Biochem; 2007 Oct; 369(2):218-25. PubMed ID: 17568555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation behavior of novel heptamethine cyanine dyes upon their binding to native and fibrillar lysozyme.
    Vus K; Tarabara U; Kurutos A; Ryzhova O; Gorbenko G; Trusova V; Gadjev N; Deligeorgiev T
    Mol Biosyst; 2017 May; 13(5):970-980. PubMed ID: 28379242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cholic acid-based fluorescent chemosenor for the detection of ATP.
    Wang H; Chan WH
    Org Biomol Chem; 2008 Jan; 6(1):162-8. PubMed ID: 18075662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.