These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28480833)

  • 61. Tuberculosis: from molecular pathogenesis to effective drug carrier design.
    Dube D; Agrawal GP; Vyas SP
    Drug Discov Today; 2012 Jul; 17(13-14):760-73. PubMed ID: 22480870
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nanocarrier-based interventions for the management of MDR/XDR-TB.
    Mustafa S; Pai RS; Singh G; Kusum Devi V
    J Drug Target; 2015 May; 23(4):287-304. PubMed ID: 25766078
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Macrophage Targeted Cellular Carriers for Effective Delivery of Anti-Tubercular Drugs.
    Agnihotri J; Singh S; Wais M; Pathak A
    Recent Pat Antiinfect Drug Discov; 2017; 12(2):162-183. PubMed ID: 29219058
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Nanoparticles as drug delivery system for antituberculous drugs].
    Sanzhakov MA; Ipatova OM; Torkhovskaia TI; Prozorovskiĭ VN; Tikhonova EG; Druzhilovskaia OS; Medvedeva NV
    Vestn Ross Akad Med Nauk; 2013; (8):37-44. PubMed ID: 24340644
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis.
    Johnson CM; Pandey R; Sharma S; Khuller GK; Basaraba RJ; Orme IM; Lenaerts AJ
    Antimicrob Agents Chemother; 2005 Oct; 49(10):4335-8. PubMed ID: 16189115
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Recently disclosed chemical entities as potential candidates for management of tuberculosis.
    Stec J; Abourashed EA
    Pharm Pat Anal; 2015; 4(4):317-47. PubMed ID: 26174569
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery.
    Roger E; Lagarce F; Garcion E; Benoit JP
    Nanomedicine (Lond); 2010 Feb; 5(2):287-306. PubMed ID: 20148639
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Advances in molecular targets and chemotherapy of tuberculosis.
    Kumari S; Ram VJ
    Drugs Today (Barc); 2004 Jun; 40(6):487-500. PubMed ID: 15349129
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis.
    Ahmad Z; Sharma S; Khuller GK
    Int J Antimicrob Agents; 2005 Oct; 26(4):298-303. PubMed ID: 16154726
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice.
    de Steenwinkel JE; van Vianen W; Ten Kate MT; Verbrugh HA; van Agtmael MA; Schiffelers RM; Bakker-Woudenberg IA
    J Antimicrob Chemother; 2007 Nov; 60(5):1064-73. PubMed ID: 17846106
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring.
    Verbeeck RK; Günther G; Kibuule D; Hunter C; Rennie TW
    Eur J Clin Pharmacol; 2016 Aug; 72(8):905-16. PubMed ID: 27305904
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sustained release drug delivery systems in management of tuberculosis.
    Khuller GK; Pandey R
    Indian J Chest Dis Allied Sci; 2003; 45(4):229-30. PubMed ID: 12962455
    [No Abstract]   [Full Text] [Related]  

  • 73. New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis.
    da Silva Leite JM; Patriota YBG; de La Roca MF; Soares-Sobrinho JL
    Curr Med Chem; 2022; 29(11):1936-1958. PubMed ID: 34212827
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Discovery of new chemical entities as potential leads against Mycobacterium tuberculosis.
    Lu X; Tang J; Liu Z; Li M; Zhang T; Zhang X; Ding K
    Bioorg Med Chem Lett; 2016 Dec; 26(24):5916-5919. PubMed ID: 27839917
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Perspectives of Nanoemulsion Strategies in The Improvement of Oral, Parenteral and Transdermal Chemotherapy.
    Pandey M; Choudhury H; Yeun OC; Yin HM; Lynn TW; Tine CLY; Wi NS; Yen KCC; Phing CS; Kesharwani P; Bhattamisra SK; Gorain B
    Curr Pharm Biotechnol; 2018; 19(4):276-292. PubMed ID: 29874994
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The application of nanoemulsion in dermatology: an overview.
    Wu Y; Li YH; Gao XH; Chen HD
    J Drug Target; 2013 May; 21(4):321-7. PubMed ID: 23600746
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects.
    Qurrat-ul-Ain ; Sharma S; Khuller GK; Garg SK
    J Antimicrob Chemother; 2003 Apr; 51(4):931-8. PubMed ID: 12654730
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel chemotherapy for tuberculosis: chemotherapeutic potential of econazole- and moxifloxacin-loaded PLG nanoparticles.
    Ahmad Z; Pandey R; Sharma S; Khuller GK
    Int J Antimicrob Agents; 2008 Feb; 31(2):142-6. PubMed ID: 18155883
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Recent patents and advances on anti - tuberculosis drug delivery and formulations.
    Vora C; Patadia R; Mittal K; Mashru R
    Recent Pat Drug Deliv Formul; 2013 Aug; 7(2):138-49. PubMed ID: 23244680
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment optimization?
    Motta I; Calcagno A; Bonora S
    Expert Opin Drug Metab Toxicol; 2018 Jan; 14(1):59-82. PubMed ID: 29226732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.