These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28481018)

  • 1. Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts.
    Tian Y; García de Arquer FP; Dinh CT; Favraud G; Bonifazi M; Li J; Liu M; Zhang X; Zheng X; Kibria MG; Hoogland S; Sinton D; Sargent EH; Fratalocchi A
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28481018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband Plasmonic NbN Photocatalysts for Enhanced Hydrogen Generation from Ammonia Borane under Visible-Near-Infrared Illumination.
    Zhang X; Lu L; Wang J; Cai L; Ling H; Bai X; Wang W
    J Phys Chem Lett; 2022 May; 13(19):4220-4226. PubMed ID: 35512403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation.
    Wang X; Liu C; Gao C; Yao K; Masouleh SSM; Berté R; Ren H; Menezes LS; Cortés E; Bicket IC; Wang H; Li N; Zhang Z; Li M; Xie W; Yu Y; Fang Y; Zhang S; Xu H; Vomiero A; Liu Y; Botton GA; Maier SA; Liang H
    ACS Nano; 2021 Jun; 15(6):10553-10564. PubMed ID: 34114794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au/La
    Zhu M; Cai X; Fujitsuka M; Zhang J; Majima T
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):2064-2068. PubMed ID: 28079971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Free Photocatalyst for H
    Zhu M; Kim S; Mao L; Fujitsuka M; Zhang J; Wang X; Majima T
    J Am Chem Soc; 2017 Sep; 139(37):13234-13242. PubMed ID: 28856885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitating Hot Electron Injection from Graphene to Semiconductor by Rectifying Contact for Vis-NIR-Driven H
    Hu WY; Li QY; Zhai GY; Lin YX; Li D; He XX; Lin X; Xu D; Sun LH; Zhang SN; Chen JS; Li XH
    Small; 2022 May; 18(19):e2200885. PubMed ID: 35396794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.
    Rahman MZ; Mullins CB
    Acc Chem Res; 2019 Jan; 52(1):248-257. PubMed ID: 30596234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths.
    Labelle AJ; Bonifazi M; Tian Y; Wong C; Hoogland S; Favraud G; Walters G; Sutherland B; Liu M; Li J; Zhang X; Kelley SO; Sargent EH; Fratalocchi A
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5556-5565. PubMed ID: 28156089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A soft-chemistry assisted strong metal-support interaction on a designed plasmonic core-shell photocatalyst for enhanced photocatalytic hydrogen production.
    Gesesse GD; Wang C; Chang BK; Tai SH; Beaunier P; Wojcieszak R; Remita H; Colbeau-Justin C; Ghazzal MN
    Nanoscale; 2020 Apr; 12(13):7011-7023. PubMed ID: 32100773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency plasmon-enhanced and graphene-supported semiconductor/metal core-satellite hetero-nanocrystal photocatalysts for visible-light dye photodegradation and H2 production from water.
    Zhang J; Wang P; Sun J; Jin Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19905-13. PubMed ID: 25369420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar Water Splitting Using Semiconductor Photocatalyst Powders.
    Takanabe K
    Top Curr Chem; 2016; 371():73-103. PubMed ID: 26134367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MoS2 Nanosheet-Modified CuInS2 Photocatalyst for Visible-Light-Driven Hydrogen Production from Water.
    Yuan YJ; Chen DQ; Huang YW; Yu ZT; Zhong JS; Chen TT; Tu WG; Guan ZJ; Cao DP; Zou ZG
    ChemSusChem; 2016 May; 9(9):1003-9. PubMed ID: 27062042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts.
    Zheng Z; Xie W; Huang B; Dai Y
    Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Nonmetal Plasmonic Z-Scheme Photocatalyst with UV- to NIR-Driven Photocatalytic Protons Reduction.
    Zhang Z; Huang J; Fang Y; Zhang M; Liu K; Dong B
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28262995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the roles of plasmonic Au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C
    Guo Y; Jia H; Yang J; Yin H; Yang Z; Wang J; Yang B
    Phys Chem Chem Phys; 2018 Aug; 20(34):22296-22307. PubMed ID: 30124712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High light harvesting efficiency CuInS
    Yuan YJ; Fang G; Chen D; Huang Y; Yang LX; Cao DP; Wang J; Yu ZT; Zou ZG
    Dalton Trans; 2018 Apr; 47(16):5652-5659. PubMed ID: 29623329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway.
    Liu J; Liu Y; Liu N; Han Y; Zhang X; Huang H; Lifshitz Y; Lee ST; Zhong J; Kang Z
    Science; 2015 Feb; 347(6225):970-4. PubMed ID: 25722405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.