These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 28481025)
1. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina. Gómez Ortiz AM; Okada E; Bedmar F; Costa JL Environ Toxicol Chem; 2017 Oct; 36(10):2587-2592. PubMed ID: 28481025 [TBL] [Abstract][Full Text] [Related]
2. Persistence and sorption of imazapyr in three Argentinean soils. Gianelli VR; Bedmar F; Costa JL Environ Toxicol Chem; 2014 Jan; 33(1):29-34. PubMed ID: 24108543 [TBL] [Abstract][Full Text] [Related]
3. Adsorption of glyphosate on variable-charge, volcanic ash-derived soils. Cáceres-Jensen L; Gan J; Báez M; Fuentes R; Escudey M J Environ Qual; 2009; 38(4):1449-57. PubMed ID: 19465720 [TBL] [Abstract][Full Text] [Related]
4. Sorption-desorption behavior of pesticides and their degradation products in volcanic and nonvolcanic soils: interpretation of interactions through two-way principal component analysis. Báez ME; Espinoza J; Silva R; Fuentes E Environ Sci Pollut Res Int; 2015 Jun; 22(11):8576-85. PubMed ID: 25561264 [TBL] [Abstract][Full Text] [Related]
5. Adsorption of glyphosate on Brazilian subtropical soils rich in iron and aluminum oxides. Pereira EAO; Melo VF; Abate G; Masini JC J Environ Sci Health B; 2019; 54(11):906-914. PubMed ID: 31343371 [TBL] [Abstract][Full Text] [Related]
6. Influence of monoammonium phosphate on glyphosate adsorption-desorption in tropical soils: Effect of the order of sorbate additions. Dotor-Robayo MY; Guerrero-Dallos JA; Martínez-Cordón MJ Chemosphere; 2022 Sep; 303(Pt 1):135030. PubMed ID: 35623435 [TBL] [Abstract][Full Text] [Related]
7. Reversibility of glyphosate sorption in pampean loess-derived soil profiles of central Argentina. Graziano M; Porfiri C; Tufo AE; Montoya JC; Afonso MDS Chemosphere; 2023 Jan; 312(Pt 1):137143. PubMed ID: 36368529 [TBL] [Abstract][Full Text] [Related]
8. Carbon-14-glyphosate behavior in relationship to pedoclimatic conditions and crop sequence. Rampoldi EA; Hang S; Barriuso E J Environ Qual; 2014 Mar; 43(2):558-67. PubMed ID: 25602657 [TBL] [Abstract][Full Text] [Related]
9. Glyphosate use in urban landscape soils: Fate, distribution, and potential human and environmental health risks. Meftaul IM; Venkateswarlu K; Annamalai P; Parven A; Megharaj M J Environ Manage; 2021 Aug; 292():112786. PubMed ID: 34030020 [TBL] [Abstract][Full Text] [Related]
10. Sorption of radiolabelled glyphosate on biochar aged in contrasting soils. Sharma AD; Lai D J Environ Sci Health B; 2019; 54(1):49-53. PubMed ID: 30376404 [TBL] [Abstract][Full Text] [Related]
11. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions. Kandil MM; El-Aswad AF; Koskinen WC J Environ Sci Health B; 2015; 50(7):473-83. PubMed ID: 25996811 [TBL] [Abstract][Full Text] [Related]
12. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils. Wang YJ; Zhou DM; Sun RJ J Environ Sci (China); 2005; 17(5):711-5. PubMed ID: 16312989 [TBL] [Abstract][Full Text] [Related]
13. Aminocyclopyrachlor sorption-desorption and leaching from three Brazilian soils. Francisco JG; Mendes KF; Pimpinato RF; Tornisielo VL; Guimarães ACD J Environ Sci Health B; 2017 Jul; 52(7):470-475. PubMed ID: 28353389 [TBL] [Abstract][Full Text] [Related]
14. Sorption and desorption of glyphosate, MCPA and tetracycline and their mixtures in soil as influenced by phosphate. Munira S; Farenhorst A J Environ Sci Health B; 2017 Dec; 52(12):887-895. PubMed ID: 28961057 [TBL] [Abstract][Full Text] [Related]
15. Adsorption mechanisms of atrazine isolated and mixed with glyphosate formulations in soil. Souza MF; Langaro AC; Passos ABRJ; Lins HA; Silva TS; Mendonça V; da Silva AA; Silva DV PLoS One; 2020; 15(11):e0242350. PubMed ID: 33237922 [TBL] [Abstract][Full Text] [Related]
16. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes. Hall KE; Spokas KA; Gamiz B; Cox L; Papiernik SK; Koskinen WC Pest Manag Sci; 2018 May; 74(5):1206-1212. PubMed ID: 28111921 [TBL] [Abstract][Full Text] [Related]
17. Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Sidoli P; Baran N; Angulo-Jaramillo R Environ Sci Pollut Res Int; 2016 Mar; 23(6):5733-42. PubMed ID: 26581693 [TBL] [Abstract][Full Text] [Related]
18. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils. Zhao Y; Wendling LA; Wang C; Pei Y J Environ Sci (China); 2015 Aug; 34():133-42. PubMed ID: 26257356 [TBL] [Abstract][Full Text] [Related]
19. Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Mamy L; Barriuso E Chemosphere; 2005 Nov; 61(6):844-55. PubMed ID: 15951002 [TBL] [Abstract][Full Text] [Related]
20. Influence of electrolyte composition and pH on glyphosate sorption by cow-dung amended soil. Ololade OO; Aiyesanmi AF; Okoronkwo AE; Ololade IA; Adanigbo P J Environ Sci Health B; 2019; 54(9):758-769. PubMed ID: 31509085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]