These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28481084)

  • 41. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interfacial Stability of Phosphate-NASICON Solid Electrolytes in Ni-Rich NCM Cathode-Based Solid-State Batteries.
    Yoshinari T; Koerver R; Hofmann P; Uchimoto Y; Zeier WG; Janek J
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23244-23253. PubMed ID: 31199108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach.
    Nowak S; Winter M
    Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces.
    Kim K; Siegel DJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39940-39950. PubMed ID: 31576739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Li
    Strauss F; Teo JH; Maibach J; Kim AY; Mazilkin A; Janek J; Brezesinski T
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57146-57154. PubMed ID: 33302618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Battery Made from a Single Material.
    Han F; Gao T; Zhu Y; Gaskell KJ; Wang C
    Adv Mater; 2015 Jun; 27(23):3473-83. PubMed ID: 25925023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solid-State Li-Ion Batteries Operating at Room Temperature Using New Borohydride Argyrodite Electrolytes.
    Dao AH; López-Aranguren P; Zhang J; Cuevas F; Latroche M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32932863
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An insight into intrinsic interfacial properties between Li metals and Li
    Chen B; Ju J; Ma J; Zhang J; Xiao R; Cui G; Chen L
    Phys Chem Chem Phys; 2017 Nov; 19(46):31436-31442. PubMed ID: 29159343
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In Situ Polymerized 1,3-Dioxolane Electrolyte for Integrated Solid-State Lithium Batteries.
    Mi YQ; Deng W; He C; Eksik O; Zheng YP; Yao K; Liu XB; Yin YH; Li YS; Xia BY; Wu ZP
    Angew Chem Int Ed Engl; 2023 Mar; 62(12):e202218621. PubMed ID: 36658098
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Flexible Li-Air Battery Workable under Harsh Conditions Based on an Integrated Structure: A Composite Lithium Anode Encased in a Gel Electrolyte.
    Li J; Wang Z; Yang L; Liu Y; Xing Y; Zhang S; Xu H
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18627-18637. PubMed ID: 33826284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amorphous Titanium Polysulfide Composites with Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries.
    Fan W; Jiang M; Liu G; Weng W; Yang J; Yao X
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17594-17600. PubMed ID: 35389629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries.
    Guo Q; Han Y; Wang H; Xiong S; Li Y; Liu S; Xie K
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41837-41844. PubMed ID: 29131566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Li Distribution Heterogeneity in Solid Electrolyte Li
    Chien PH; Feng X; Tang M; Rosenberg JT; O'Neill S; Zheng J; Grant SC; Hu YY
    J Phys Chem Lett; 2018 Apr; 9(8):1990-1998. PubMed ID: 29595982
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries.
    Gao H; Xue L; Xin S; Park K; Goodenough JB
    Angew Chem Int Ed Engl; 2017 May; 56(20):5541-5545. PubMed ID: 28402602
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distinguishing the Effects of the Space-Charge Layer and Interfacial Side Reactions on Li
    Lu G; Geng F; Gu S; Li C; Shen M; Hu B
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25556-25565. PubMed ID: 35616325
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling Effective Ionic Conductivity and Binder Influence in Composite Cathodes for All-Solid-State Batteries.
    Bielefeld A; Weber DA; Janek J
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12821-12833. PubMed ID: 32093477
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVDF-HFP) for Enhanced Solid-State Lithium-Sulfur Batteries.
    Xia Y; Wang X; Xia X; Xu R; Zhang S; Wu J; Liang Y; Gu C; Tu J
    Chemistry; 2017 Oct; 23(60):15203-15209. PubMed ID: 28875509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.
    Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T
    Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.