These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 28481299)
1. Integrative RNA- and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Cheng H; Hao M; Wang W; Mei D; Wells R; Liu J; Wang H; Sang S; Tang M; Zhou R; Chu W; Fu L; Hu Q Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28481299 [TBL] [Abstract][Full Text] [Related]
2. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus. Cheng H; Hao M; Wang W; Mei D; Tong C; Wang H; Liu J; Fu L; Hu Q BMC Plant Biol; 2016 Sep; 16(1):196. PubMed ID: 27608922 [TBL] [Abstract][Full Text] [Related]
3. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Wang H; Cheng H; Wang W; Liu J; Hao M; Mei D; Zhou R; Fu L; Hu Q Sci Rep; 2016 Dec; 6():38493. PubMed ID: 27922076 [TBL] [Abstract][Full Text] [Related]
4. Joint RNA-Seq and miRNA Profiling Analyses to Reveal Molecular Mechanisms in Regulating Thickness of Pod Canopy in Chen Z; Huo Q; Yang H; Jian H; Qu C; Lu K; Li J Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31387302 [TBL] [Abstract][Full Text] [Related]
5. The auxin response factor gene family in allopolyploid Brassica napus. Wen J; Guo P; Ke Y; Liu M; Li P; Wu Y; Ran F; Wang M; Li J; Du H PLoS One; 2019; 14(4):e0214885. PubMed ID: 30958842 [TBL] [Abstract][Full Text] [Related]
6. Three BnaIAA7 homologs are involved in auxin/brassinosteroid-mediated plant morphogenesis in rapeseed (Brassica napus L.). Zheng M; Hu M; Yang H; Tang M; Zhang L; Liu H; Li X; Liu J; Sun X; Fan S; Zhang J; Terzaghi W; Pu H; Hua W Plant Cell Rep; 2019 Aug; 38(8):883-897. PubMed ID: 31011789 [TBL] [Abstract][Full Text] [Related]
7. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic analysis reveals the mechanism of thermosensitive genic male sterility (TGMS) of Brassica napus under the high temperature inducement. Tang X; Hao YJ; Lu JX; Lu G; Zhang T BMC Genomics; 2019 Aug; 20(1):644. PubMed ID: 31409283 [TBL] [Abstract][Full Text] [Related]
10. The initial deficiency of protein processing and flavonoids biosynthesis were the main mechanisms for the male sterility induced by SX-1 in Brassica napus. Ning L; Lin Z; Gu J; Gan L; Li Y; Wang H; Miao L; Zhang L; Wang B; Li M BMC Genomics; 2018 Nov; 19(1):806. PubMed ID: 30404610 [TBL] [Abstract][Full Text] [Related]
11. Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. Dong Y; Li M; Zhang P; Wang X; Fan C; Zhou Y BMC Plant Biol; 2014 Nov; 14():332. PubMed ID: 25428555 [TBL] [Abstract][Full Text] [Related]
12. MicroRNAs and their putative targets in Brassica napus seed maturation. Huang D; Koh C; Feurtado JA; Tsang EW; Cutler AJ BMC Genomics; 2013 Feb; 14():140. PubMed ID: 23448243 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). Li H; Wang B; Zhang Q; Wang J; King GJ; Liu K BMC Plant Biol; 2017 Nov; 17(1):204. PubMed ID: 29145811 [TBL] [Abstract][Full Text] [Related]
14. Identification of miRNAs that regulate silique development in Brassica napus. Chen L; Chen L; Zhang X; Liu T; Niu S; Wen J; Yi B; Ma C; Tu J; Fu T; Shen J Plant Sci; 2018 Apr; 269():106-117. PubMed ID: 29606207 [TBL] [Abstract][Full Text] [Related]
15. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. Li H; Li J; Song J; Zhao B; Guo C; Wang B; Zhang Q; Wang J; King GJ; Liu K New Phytol; 2019 Apr; 222(2):837-851. PubMed ID: 30536633 [TBL] [Abstract][Full Text] [Related]
16. A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). Liu L; Liu F; Chu J; Yi X; Fan W; Tang T; Chen G; Guo Q; Zhao X BMC Plant Biol; 2019 Jun; 19(1):264. PubMed ID: 31215396 [TBL] [Abstract][Full Text] [Related]
17. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
18. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Wei C; Zhu L; Wen J; Yi B; Ma C; Tu J; Shen J; Fu T Plant Sci; 2018 May; 270():97-113. PubMed ID: 29576090 [TBL] [Abstract][Full Text] [Related]
19. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Cao JY; Xu YP; Zhao L; Li SS; Cai XZ Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118 [TBL] [Abstract][Full Text] [Related]
20. Identification of Bna.IAA7.C05 as allelic gene for dwarf mutant generated from tissue culture in oilseed rape. Cheng H; Jin F; Zaman QU; Ding B; Hao M; Wang Y; Huang Y; Wells R; Dong Y; Hu Q BMC Plant Biol; 2019 Nov; 19(1):500. PubMed ID: 31729952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]