BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

851 related articles for article (PubMed ID: 28481416)

  • 1. Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage.
    Nielsen JL; Aagaard P; Prokhorova TA; Nygaard T; Bech RD; Suetta C; Frandsen U
    J Physiol; 2017 Jul; 595(14):4857-4873. PubMed ID: 28481416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction.
    Nielsen JL; Aagaard P; Bech RD; Nygaard T; Hvid LG; Wernbom M; Suetta C; Frandsen U
    J Physiol; 2012 Sep; 590(17):4351-61. PubMed ID: 22802591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute response and subcellular movement of HSP27, αB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise.
    Cumming KT; Paulsen G; Wernbom M; Ugelstad I; Raastad T
    Acta Physiol (Oxf); 2014 Aug; 211(4):634-46. PubMed ID: 24762334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute and long-term effects of blood flow restricted training on heat shock proteins and endogenous antioxidant systems.
    Cumming KT; Ellefsen S; Rønnestad BR; Ugelstad I; Raastad T
    Scand J Med Sci Sports; 2017 Nov; 27(11):1190-1201. PubMed ID: 27726197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The immune system in sporadic inclusion body myositis patients is not compromised by blood-flow restricted exercise training.
    Jensen KY; Jacobsen M; Schrøder HD; Aagaard P; Nielsen JL; Jørgensen AN; Boyle E; Bech RD; Rosmark S; Diederichsen LP; Frandsen U
    Arthritis Res Ther; 2019 Dec; 21(1):293. PubMed ID: 31852482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed Effect of Blood Flow-restricted Resistance Training on Rapid Force Capacity.
    Nielsen JL; Frandsen U; Prokhorova T; Bech RD; Nygaard T; Suetta C; Aagaard P
    Med Sci Sports Exerc; 2017 Jun; 49(6):1157-1167. PubMed ID: 28121802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals.
    Davids CJ; Næss TC; Moen M; Cumming KT; Horwath O; Psilander N; Ekblom B; Coombes JS; Peake J; Raastad T; Roberts LA
    J Appl Physiol (1985); 2021 Dec; 131(6):1731-1749. PubMed ID: 34554017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training-Exercise-Induced Adaptations and Signs of Perivascular Stress.
    Nielsen JL; Frandsen U; Jensen KY; Prokhorova TA; Dalgaard LB; Bech RD; Nygaard T; Suetta C; Aagaard P
    Front Physiol; 2020; 11():556. PubMed ID: 32595516
    [No Abstract]   [Full Text] [Related]  

  • 9. Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress?
    Neto GR; Novaes JS; Salerno VP; Gonçalves MM; Batista GR; Cirilo-Sousa MS
    J Sports Sci; 2018 Jan; 36(1):104-110. PubMed ID: 28143367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood flow restriction does not alter the early hypertrophic signaling and short-term adaptive response to resistance exercise when performed to task failure.
    Pignanelli C; Holloway GP; Burr JF
    J Appl Physiol (1985); 2023 May; 134(5):1265-1277. PubMed ID: 37055038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute Neuromuscular Adaptations in Response to Low-Intensity Blood-Flow Restricted Exercise and High-Intensity Resistance Exercise: Are There Any Differences?
    Fatela P; Reis JF; Mendonca GV; Freitas T; Valamatos MJ; Avela J; Mil-Homens P
    J Strength Cond Res; 2018 Apr; 32(4):902-910. PubMed ID: 29570594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training.
    Centner C; Lauber B; Seynnes OR; Jerger S; Sohnius T; Gollhofer A; König D
    J Appl Physiol (1985); 2019 Dec; 127(6):1660-1667. PubMed ID: 31725362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise.
    Vissing K; Bayer ML; Overgaard K; Schjerling P; Raastad T
    Acta Physiol (Oxf); 2009 Jul; 196(3):283-93. PubMed ID: 19032600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure.
    Bjørnsen T; Wernbom M; Løvstad A; Paulsen G; D'Souza RF; Cameron-Smith D; Flesche A; Hisdal J; Berntsen S; Raastad T
    J Appl Physiol (1985); 2019 Mar; 126(3):578-592. PubMed ID: 30543499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat Shock Protein 27 Response to Wrestling Training in Relation to the Muscle Damage and Inflammation.
    Zembron-Lacny A; Ziemann E; Zurek P; Hübner-Wozniak E
    J Strength Cond Res; 2017 May; 31(5):1221-1228. PubMed ID: 26466130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle damage and repeated bout effect following blood flow restricted exercise.
    Sieljacks P; Matzon A; Wernbom M; Ringgaard S; Vissing K; Overgaard K
    Eur J Appl Physiol; 2016 Mar; 116(3):513-25. PubMed ID: 26645685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological adaptations and myocellular stress in short-term, high-frequency blood flow restriction training: A scoping review.
    de Queiros VS; Rolnick N; de Alcântara Varela PW; Cabral BGAT; Silva Dantas PM
    PLoS One; 2022; 17(12):e0279811. PubMed ID: 36584157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of blood flow restricted exercise training on muscular strength and blood flow in older adults.
    Kim J; Lang JA; Pilania N; Franke WD
    Exp Gerontol; 2017 Dec; 99():127-132. PubMed ID: 28986234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training.
    Abe T; Kearns CF; Sato Y
    J Appl Physiol (1985); 2006 May; 100(5):1460-6. PubMed ID: 16339340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Session rating of perceived exertion following resistance exercise with blood flow restriction.
    Vieira A; Gadelha AB; Ferreira-Junior JB; Vieira CA; Soares Ede M; Cadore EL; Wagner DR; Bottaro M
    Clin Physiol Funct Imaging; 2015 Sep; 35(5):323-7. PubMed ID: 24438467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.