These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28481474)

  • 1. Instant Hydrogelation Inspired by Inflammasomes.
    Wang H; Feng Z; Lu A; Jiang Y; Wu H; Xu B
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7579-7583. PubMed ID: 28481474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular hydrogels based on the epitope of potassium ion channels.
    Kuang Y; Gao Y; Shi J; Lin HC; Xu B
    Chem Commun (Camb); 2011 Aug; 47(31):8772-4. PubMed ID: 21701756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels.
    Shy AN; Li J; Shi J; Zhou N; Xu B
    J Drug Target; 2020; 28(7-8):760-765. PubMed ID: 32668995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels.
    Hsu SM; Lin YC; Chang JW; Liu YH; Lin HC
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1921-7. PubMed ID: 24420005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes.
    Shy AN; Wang H; Feng Z; Xu B
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33375296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-manipulated hydrogelation of small molecules for biomedical applications.
    Cheng C; Sun Q; Wang X; He B; Jiang T
    Acta Biomater; 2022 Oct; 151():88-105. PubMed ID: 35970483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy.
    Sborgi L; Ravotti F; Dandey VP; Dick MS; Mazur A; Reckel S; Chami M; Scherer S; Huber M; Böckmann A; Egelman EH; Stahlberg H; Broz P; Meier BH; Hiller S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13237-42. PubMed ID: 26464513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes.
    Lu A; Magupalli VG; Ruan J; Yin Q; Atianand MK; Vos MR; Schröder GF; Fitzgerald KA; Wu H; Egelman EH
    Cell; 2014 Mar; 156(6):1193-1206. PubMed ID: 24630722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antigen-Antibody Interaction-Based Self-Healing Capability of Hybrid Hydrogels Composed of Genetically Engineered Filamentous Viruses and Gold Nanoparticles.
    Sawada T; Serizawa T
    Protein Pept Lett; 2018; 25(1):64-67. PubMed ID: 29237366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic-Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels.
    Li J; Du X; Hashim S; Shy A; Xu B
    J Am Chem Soc; 2017 Jan; 139(1):71-74. PubMed ID: 27997165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Environment-Differentiated Self-Assembly of Nanofibers.
    Zheng Z; Chen P; Xie M; Wu C; Luo Y; Wang W; Jiang J; Liang G
    J Am Chem Soc; 2016 Sep; 138(35):11128-31. PubMed ID: 27532322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway driven self-assembly and living supramolecular polymerization in an amyloid-inspired peptide amphiphile.
    Singh A; Joseph JP; Gupta D; Sarkar I; Pal A
    Chem Commun (Camb); 2018 Sep; 54(76):10730-10733. PubMed ID: 30191235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart hydrogels from laterally-grafted peptide assembly.
    Li W; Park IS; Kang SK; Lee M
    Chem Commun (Camb); 2012 Sep; 48(70):8796-8. PubMed ID: 22836696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly.
    Jin T; Perry A; Smith P; Jiang J; Xiao TS
    J Biol Chem; 2013 May; 288(19):13225-35. PubMed ID: 23530044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-step control over self-assembled hydrogels of peptide-derived building blocks and a polymeric cross-linker.
    Nguyen VD; Pal A; Snijkers F; Colomb-Delsuc M; Leonetti G; Otto S; van der Gucht J
    Soft Matter; 2016 Jan; 12(2):432-40. PubMed ID: 26477580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of hydrogel stiffness using a two-component peptide system for mammalian cell culture.
    Scelsi A; Bochicchio B; Smith A; Workman VL; Castillo Diaz LA; Saiani A; Pepe A
    J Biomed Mater Res A; 2019 Mar; 107(3):535-544. PubMed ID: 30456777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanospheres of doxorubicin as cross-linkers for a supramolecular hydrogelation.
    Xue Q; Ren H; Xu C; Wang G; Ren C; Hao J; Ding D
    Sci Rep; 2015 Mar; 5():8764. PubMed ID: 25739554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural transformation and physical properties of a hydrogel-forming peptide studied by NMR, transmission electron microscopy, and dynamic rheometer.
    Huang H; Herrera AI; Luo Z; Prakash O; Sun XS
    Biophys J; 2012 Sep; 103(5):979-88. PubMed ID: 23009847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.