These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28481474)

  • 21. Branched peptides for enzymatic supramolecular hydrogelation.
    He H; Wang H; Zhou N; Yang D; Xu B
    Chem Commun (Camb); 2017 Dec; 54(1):86-89. PubMed ID: 29211067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width.
    Zhang Y; Zhang B; Kuang Y; Gao Y; Shi J; Zhang XX; Xu B
    J Am Chem Soc; 2013 Apr; 135(13):5008-11. PubMed ID: 23521132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration.
    Yang S; Wang C; Zhu J; Lu C; Li H; Chen F; Lu J; Zhang Z; Yan X; Zhao H; Sun X; Zhao L; Liang J; Wang Y; Peng J; Wang X
    Theranostics; 2020; 10(18):8227-8249. PubMed ID: 32724468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides.
    Yang X; Lu H; Tao Y; Zhang H; Wang H
    J Nanobiotechnology; 2022 Feb; 20(1):77. PubMed ID: 35144637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural mechanisms of inflammasome assembly.
    Lu A; Wu H
    FEBS J; 2015 Feb; 282(3):435-44. PubMed ID: 25354325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aromatic-aromatic interactions enhance interfiber contacts for enzymatic formation of a spontaneously aligned supramolecular hydrogel.
    Zhou J; Du X; Gao Y; Shi J; Xu B
    J Am Chem Soc; 2014 Feb; 136(8):2970-3. PubMed ID: 24512553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The first CD73-instructed supramolecular hydrogel.
    Wu D; Du X; Shi J; Zhou J; Zhou N; Xu B
    J Colloid Interface Sci; 2015 Jun; 447():269-72. PubMed ID: 25524006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular nanofibers of dexamethasone derivatives to form hydrogel for topical ocular drug delivery.
    Zhang Z; Yu J; Zhou Y; Zhang R; Song Q; Lei L; Li X
    Colloids Surf B Biointerfaces; 2018 Apr; 164():436-443. PubMed ID: 29438842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-proteinogenic amino acid based supramolecular hydrogel material for enhanced cell proliferation.
    Arokianathan JF; Ramya KA; Janeena A; Deshpande AP; Ayyadurai N; Leemarose A; Shanmugam G
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110581. PubMed ID: 31677412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of the human NLRP9 pyrin domain suggests a distinct mode of inflammasome assembly.
    Marleaux M; Anand K; Latz E; Geyer M
    FEBS Lett; 2020 Aug; 594(15):2383-2395. PubMed ID: 32542665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Rapid Self-Assembly Peptide Hydrogel for Recruitment and Activation of Immune Cells.
    Luo R; Wan Y; Luo X; Liu G; Li Z; Chen J; Su D; Lu N; Luo Z
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.
    Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F
    Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Healing Chitosan Hydrogels: Preparation and Rheological Characterization.
    Craciun AM; Morariu S; Marin L
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Assembly of Naturally Small Molecules into Supramolecular Fibrillar Networks for Wound Healing.
    Huang H; Gong W; Wang X; He W; Hou Y; Hu J
    Adv Healthc Mater; 2022 Jun; 11(12):e2102476. PubMed ID: 35306757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds.
    Loo Y; Wong YC; Cai EZ; Ang CH; Raju A; Lakshmanan A; Koh AG; Zhou HJ; Lim TC; Moochhala SM; Hauser CA
    Biomaterials; 2014 Jun; 35(17):4805-14. PubMed ID: 24636214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogelation of the Short Self-Assembling Peptide I3QGK Regulated by Transglutaminase and Use for Rapid Hemostasis.
    Chen C; Zhang Y; Fei R; Cao C; Wang M; Wang J; Bai J; Cox H; Waigh T; Lu JR; Xu H
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17833-41. PubMed ID: 27337106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alignment of nanostructured tripeptide gels by directional ultrasonication.
    Pappas CG; Frederix PW; Mutasa T; Fleming S; Abul-Haija YM; Kelly SM; Gachagan A; Kalafatovic D; Trevino J; Ulijn RV; Bai S
    Chem Commun (Camb); 2015 May; 51(40):8465-8. PubMed ID: 25891849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels.
    Shi J; Yuan D; Haburcak R; Zhang Q; Zhao C; Zhang X; Xu B
    Chemistry; 2015 Dec; 21(50):18047-51. PubMed ID: 26462722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.