BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28481507)

  • 1. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.
    Zhu Z; Snellings GMBF; Koebel MM; Malfait WJ
    ACS Appl Mater Interfaces; 2017 May; 9(21):18222-18230. PubMed ID: 28481507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-Insulating Transparent Polyisocyanurate-Polyurethane Aerogels: Analysis of Thermal Conductivity and Mechanical Properties.
    Merillas B; Villafañe F; Rodríguez-Pérez MÁ
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials.
    Druel L; Bardl R; Vorwerg W; Budtova T
    Biomacromolecules; 2017 Dec; 18(12):4232-4239. PubMed ID: 29068674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels.
    Groult S; Budtova T
    Carbohydr Polym; 2018 Sep; 196():73-81. PubMed ID: 29891326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of High-Performance Polyisocyanurate Aerogels through Cocyclotrimerization of 4,4'-Methylene Diphenyl Diisocyanate and Its Mono-Urethane Derivatives.
    Wang C; Guo Y; Türel T; Tomović Ž
    ACS Appl Mater Interfaces; 2024 Jun; ():. PubMed ID: 38920358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and Minimal-Solvent Production of Superinsulating Silica Aerogel Granulate.
    Huber L; Zhao S; Malfait WJ; Vares S; Koebel MM
    Angew Chem Int Ed Engl; 2017 Apr; 56(17):4753-4756. PubMed ID: 28332751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch-Based Aerogels Obtained via Solvent-Induced Gelation.
    Dogenski M; Gurikov P; Baudron V; Oliveira JV; Smirnova I; Ferreira SRS
    Gels; 2020 Sep; 6(3):. PubMed ID: 32961804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.
    Jiménez-Saelices C; Seantier B; Cathala B; Grohens Y
    Carbohydr Polym; 2017 Feb; 157():105-113. PubMed ID: 27987805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.
    Williams JC; Nguyen BN; McCorkle L; Scheiman D; Griffin JS; Steiner SA; Meador MA
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1801-1809. PubMed ID: 28060486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica Aerogel Monoliths Derived from Silica Hydrosol with Various Surfactants.
    Chen D; Wang X; Ding W; Zou W; Zhu Q; Shen J
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30518083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of solvent parameters on properties of iron-based silica binary aerogels as adsorbents.
    Hu H; Chen N; Wei W; Li H; Jiang Z; Xu Y; Xie J
    J Colloid Interface Sci; 2019 Aug; 549():189-200. PubMed ID: 31035133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose-silica aerogels.
    Demilecamps A; Beauger C; Hildenbrand C; Rigacci A; Budtova T
    Carbohydr Polym; 2015 May; 122():293-300. PubMed ID: 25817671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Impact of the Synthesis Variables Involved in the Polyurethane Aerogels-like Materials Design.
    Pinilla-Peñalver E; Cantero D; Romero A; Sánchez-Silva L
    Gels; 2024 Mar; 10(3):. PubMed ID: 38534627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment.
    Sivaraman D; Siqueira G; Maurya AK; Zhao S; Koebel MM; Nyström G; Lattuada M; Malfait WJ
    Carbohydr Polym; 2022 Sep; 292():119675. PubMed ID: 35725170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin.
    Zhao S; Malfait WJ; Demilecamps A; Zhang Y; Brunner S; Huber L; Tingaut P; Rigacci A; Budtova T; Koebel MM
    Angew Chem Int Ed Engl; 2015 Nov; 54(48):14282-6. PubMed ID: 26447457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H
    Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Modulus, Strut-like poly(ether ether ketone) Aerogels Produced from a Benign Solvent.
    Spiering GA; Godshall GF; Moore RB
    Gels; 2024 Apr; 10(4):. PubMed ID: 38667702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review.
    Karamikamkar S; Naguib HE; Park CB
    Adv Colloid Interface Sci; 2020 Feb; 276():102101. PubMed ID: 31978639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Thermal Conductivities of Aromatic Polyimide Aerogels.
    Feng J; Wang X; Jiang Y; Du D; Feng J
    ACS Appl Mater Interfaces; 2016 May; 8(20):12992-6. PubMed ID: 27149155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.