These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28481887)

  • 1. Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans.
    Tomasini N; Ragone PG; Gourbière S; Aparicio JP; Diosque P
    PLoS Comput Biol; 2017 May; 13(5):e1005532. PubMed ID: 28481887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions Between Trypanosoma cruzi the Chagas Disease Parasite and Naturally Infected Wild Mepraia Vectors of Chile.
    Campos-Soto R; Ortiz S; Cordova I; Bruneau N; Botto-Mahan C; Solari A
    Vector Borne Zoonotic Dis; 2016 Mar; 16(3):165-71. PubMed ID: 26771702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential risk of enzootic Trypanosoma cruzi transmission inside four training and re-training military battalions (BITER) in Colombia.
    Cantillo-Barraza O; Torres J; Hernández C; Romero Y; Zuluaga S; Correa-Cárdenas CA; Herrera G; Rodríguez O; Alvarado MT; Ramírez JD; Méndez C
    Parasit Vectors; 2021 Oct; 14(1):519. PubMed ID: 34625109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.
    Pelosse P; Kribs-Zaleta CM
    J Theor Biol; 2012 Nov; 312():133-42. PubMed ID: 22892441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High levels of human infection with Trypanosoma cruzi associated with the domestic density of infected vectors and hosts in a rural area of northeastern Argentina.
    Cardinal MV; Sartor PA; Gaspe MS; Enriquez GF; Colaianni I; Gürtler RE
    Parasit Vectors; 2018 Aug; 11(1):492. PubMed ID: 30165892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the transmission of Trypanosoma cruzi infection through hosts and vectors.
    Fabrizio MC; Schweigmann NJ; Bartoloni NJ
    Parasitology; 2016 Aug; 143(9):1168-78. PubMed ID: 27039662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of canine sentinels for reemerging Trypanosoma cruzi transmission.
    Castillo-Neyra R; Chou Chu L; Quispe-Machaca V; Ancca-Juarez J; Malaga Chavez FS; Bastos Mazuelos M; Naquira C; Bern C; Gilman RH; Levy MZ
    Prev Vet Med; 2015 Jul; 120(3-4):349-56. PubMed ID: 25962956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A metapopulation model for sylvatic T. cruzi transmission with vector migration.
    Crawford B; Kribs-Zaleta C
    Math Biosci Eng; 2014 Jun; 11(3):471-509. PubMed ID: 24506549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control measures for Chagas disease.
    Cruz-Pacheco G; Esteva L; Vargas C
    Math Biosci; 2012 May; 237(1-2):49-60. PubMed ID: 22450034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanosoma cruzi infection in Triatoma infestans and high levels of human-vector contact across a rural-to-urban gradient in the Argentine Chaco.
    Alvedro A; Gaspe MS; Milbourn H; Macchiaverna NP; Laiño MA; Enriquez GF; Gürtler RE; Cardinal MV
    Parasit Vectors; 2021 Jan; 14(1):35. PubMed ID: 33422133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. American trypanosomiasis, or Chagas disease, in Panama: a chronological synopsis of ecological and epidemiological research.
    Rodriguez IG; Loaiza JR
    Parasit Vectors; 2017 Oct; 10(1):459. PubMed ID: 29017584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral Versus Intragastric Inoculation: Similar Pathways of
    Barreto de Albuquerque J; Silva Dos Santos D; Stein JV; de Meis J
    Front Immunol; 2018; 9():1734. PubMed ID: 30100907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru.
    Alroy KA; Huang C; Gilman RH; Quispe-Machaca VR; Marks MA; Ancca-Juarez J; Hillyard M; Verastegui M; Sanchez G; Cabrera L; Vidal E; Billig EM; Cama VA; Náquira C; Bern C; Levy MZ;
    PLoS Negl Trop Dis; 2015 May; 9(5):e0003779. PubMed ID: 26000770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease.
    Mejía-Jaramillo AM; Agudelo-Uribe LA; Dib JC; Ortiz S; Solari A; Triana-Chávez O
    Parasit Vectors; 2014 Mar; 7():108. PubMed ID: 24656115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease.
    Nouvellet P; Dumonteil E; Gourbière S
    PLoS Negl Trop Dis; 2013 Nov; 7(11):e2505. PubMed ID: 24244766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottlenecks in domestic animal populations can facilitate the emergence of Trypanosoma cruzi, the aetiological agent of Chagas disease.
    Levy MZ; Tustin A; Castillo-Neyra R; Mabud TS; Levy K; Barbu CM; Quispe-Machaca VR; Ancca-Juarez J; Borrini-Mayori K; Naquira-Velarde C; Ostfeld RS;
    Proc Biol Sci; 2015 Jul; 282(1810):. PubMed ID: 26085582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-epidemiological study of an endemic Chagas disease region in northern Colombia reveals the importance of Triatoma maculata (Hemiptera: Reduviidae), dogs and Didelphis marsupialis in Trypanosoma cruzi maintenance.
    Cantillo-Barraza O; Garcés E; Gómez-Palacio A; Cortés LA; Pereira A; Marcet PL; Jansen AM; Triana-Chávez O
    Parasit Vectors; 2015 Sep; 8():482. PubMed ID: 26394766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunity and immune modulation in Trypanosoma cruzi infection.
    Cardillo F; de Pinho RT; Antas PR; Mengel J
    Pathog Dis; 2015 Dec; 73(9):ftv082. PubMed ID: 26438729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphical analysis of evolutionary trade-off in sylvatic Trypanosoma cruzi transmission modes.
    Kribs-Zaleta CM
    J Theor Biol; 2014 Jul; 353():34-43. PubMed ID: 24632446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chagas disease domestic transmission cycle in Guatemala: Parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley.
    Pennington PM; Messenger LA; Reina J; Juárez JG; Lawrence GG; Dotson EM; Llewellyn MS; Cordón-Rosales C
    Acta Trop; 2015 Nov; 151():80-7. PubMed ID: 26215126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.