These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Different mechanisms involved in adaptation to stable and unstable dynamics. Osu R; Burdet E; Franklin DW; Milner TE; Kawato M J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431 [TBL] [Abstract][Full Text] [Related]
24. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field. Lai EJ; Hodgson AJ; Milner TE Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384 [TBL] [Abstract][Full Text] [Related]
25. The role of kinematic redundancy in adaptation of reaching. Yang JF; Scholz JP; Latash ML Exp Brain Res; 2007 Jan; 176(1):54-69. PubMed ID: 16874517 [TBL] [Abstract][Full Text] [Related]
26. Cerebellar contributions to reach adaptation and learning sensory consequences of action. Izawa J; Criscimagna-Hemminger SE; Shadmehr R J Neurosci; 2012 Mar; 32(12):4230-9. PubMed ID: 22442085 [TBL] [Abstract][Full Text] [Related]
27. Decay of motor memories in the absence of error. Vaswani PA; Shadmehr R J Neurosci; 2013 May; 33(18):7700-9. PubMed ID: 23637163 [TBL] [Abstract][Full Text] [Related]
29. Scaling down motor memories: de-adaptation after motor learning. Davidson PR; Wolpert DM Neurosci Lett; 2004 Nov; 370(2-3):102-7. PubMed ID: 15488303 [TBL] [Abstract][Full Text] [Related]
30. How is somatosensory information used to adapt to changes in the mechanical environment? Milner TE; Hinder MR; Franklin DW Prog Brain Res; 2007; 165():363-72. PubMed ID: 17925257 [TBL] [Abstract][Full Text] [Related]
31. Influence of haptic guidance in learning a novel visuomotor task. van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551 [TBL] [Abstract][Full Text] [Related]
32. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation. Hewitt AL; Popa LS; Ebner TJ J Neurosci; 2015 Jan; 35(3):1106-24. PubMed ID: 25609626 [TBL] [Abstract][Full Text] [Related]
33. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses. Wang T; Dordevic GS; Shadmehr R Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234 [TBL] [Abstract][Full Text] [Related]
34. Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations. Mongeon D; Blanchet P; Messier J Brain Cogn; 2013 Mar; 81(2):271-82. PubMed ID: 23313834 [TBL] [Abstract][Full Text] [Related]
35. Movements following force-field adaptation are aligned with altered sense of limb position. Ohashi H; Valle-Mena R; Gribble PL; Ostry DJ Exp Brain Res; 2019 May; 237(5):1303-1313. PubMed ID: 30863880 [TBL] [Abstract][Full Text] [Related]
36. Threshold control of arm posture and movement adaptation to load. Foisy M; Feldman AG Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611 [TBL] [Abstract][Full Text] [Related]
37. Robust Control in Human Reaching Movements: A Model-Free Strategy to Compensate for Unpredictable Disturbances. Crevecoeur F; Scott SH; Cluff T J Neurosci; 2019 Oct; 39(41):8135-8148. PubMed ID: 31488611 [TBL] [Abstract][Full Text] [Related]
38. Assessing explicit strategies in force field adaptation. Schween R; McDougle SD; Hegele M; Taylor JA J Neurophysiol; 2020 Apr; 123(4):1552-1565. PubMed ID: 32208878 [TBL] [Abstract][Full Text] [Related]