These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28482113)

  • 21. Mass-transport Control on the Discharge Mechanism in Li-O2 Batteries Using Carbon Cathodes with Varied Porosity.
    Aklalouch M; Olivares-Marín M; Lee RC; Palomino P; Enciso E; Tonti D
    ChemSusChem; 2015 Oct; 8(20):3465-71. PubMed ID: 26382302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries.
    Guo G; Yao X; Ang H; Tan H; Zhang Y; Guo Y; Fong E; Yan Q
    Nanotechnology; 2016 Jan; 27(4):045401. PubMed ID: 26657319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.
    Shui JL; Okasinski JS; Chen C; Almer JD; Liu DJ
    ChemSusChem; 2014 Feb; 7(2):543-8. PubMed ID: 24399807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries.
    Sun YK; Lee MJ; Yoon CS; Hassoun J; Amine K; Scrosati B
    Adv Mater; 2012 Mar; 24(9):1192-6. PubMed ID: 22362564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries.
    Elazari R; Salitra G; Garsuch A; Panchenko A; Aurbach D
    Adv Mater; 2011 Dec; 23(47):5641-4. PubMed ID: 22052740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Organic Catalyst for Li-O2 Batteries: Dilithium Quinone-1,4-Dicarboxylate.
    Liu J; Renault S; Brandell D; Gustafsson T; Edström K; Zhu J
    ChemSusChem; 2015 Jul; 8(13):2198-203. PubMed ID: 26073442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. History effects in lithium-oxygen batteries: how initial seeding influences the discharge capacity.
    Rinaldi A; Wijaya O; Hoster HE; Yu DY
    ChemSusChem; 2014 May; 7(5):1283-8. PubMed ID: 24591297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries.
    Li Y; Bai Y; Bi X; Qian J; Ma L; Tian J; Wu C; Wu F; Lu J; Amine K
    ChemSusChem; 2016 Apr; 9(7):728-35. PubMed ID: 26940745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binder-free graphene foams for O2 electrodes of Li-O2 batteries.
    Zhang W; Zhu J; Ang H; Zeng Y; Xiao N; Gao Y; Liu W; Hng HH; Yan Q
    Nanoscale; 2013 Oct; 5(20):9651-8. PubMed ID: 23963594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Li-O2/CO2 battery.
    Takechi K; Shiga T; Asaoka T
    Chem Commun (Camb); 2011 Mar; 47(12):3463-5. PubMed ID: 21305097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Situ Coating of Li[Ni0.33 Mn0.33 Co0.33 ]O2 Particles to Enable Aqueous Electrode Processing.
    Loeffler N; Kim GT; Mueller F; Diemant T; Kim JK; Behm RJ; Passerini S
    ChemSusChem; 2016 May; 9(10):1112-7. PubMed ID: 27098345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries.
    Noh HJ; Ju JW; Sun YK
    ChemSusChem; 2014 Jan; 7(1):245-52. PubMed ID: 24127348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-, binder-, and precious metal-free cathodes for non-aqueous lithium-oxygen batteries: nanoflake-decorated nanoneedle oxide arrays.
    Riaz A; Jung KN; Chang W; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17815-22. PubMed ID: 25280376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries.
    Kim Y
    ACS Appl Mater Interfaces; 2012 May; 4(5):2329-33. PubMed ID: 22497580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust cycling of Li-O2 batteries through the synergistic effect of blended electrolytes.
    Kim BG; Lee JN; Lee DJ; Park JK; Choi JW
    ChemSusChem; 2013 Mar; 6(3):443-8. PubMed ID: 23371842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D free-standing hierarchical CuCo
    Sun W; Wang Y; Wu H; Wang Z; Rooney D; Sun K
    Chem Commun (Camb); 2017 Aug; 53(62):8711-8714. PubMed ID: 28722045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.