These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 28482190)
1. Gemini pyridinium amphiphiles for the synthesis and stabilization of gold nanoparticles for drug delivery. Alea-Reyes ME; González A; Calpena AC; Ramos-López D; de Lapuente J; Pérez-García L J Colloid Interface Sci; 2017 Sep; 502():172-183. PubMed ID: 28482190 [TBL] [Abstract][Full Text] [Related]
2. Gemini imidazolium amphiphiles for the synthesis, stabilization, and drug delivery from gold nanoparticles. Casal-Dujat L; Rodrigues M; Yagüe A; Calpena AC; Amabilino DB; González-Linares J; Borràs M; Pérez-García L Langmuir; 2012 Feb; 28(5):2368-81. PubMed ID: 22032629 [TBL] [Abstract][Full Text] [Related]
3. Multi-stage tandem mass spectrometric analysis of novel β-cyclodextrin-substituted and novel bis-pyridinium gemini surfactants designed as nanomedical drug delivery agents. Donkuru M; Chitanda JM; Verrall RE; El-Aneed A Rapid Commun Mass Spectrom; 2014 Apr; 28(7):757-72. PubMed ID: 24573807 [TBL] [Abstract][Full Text] [Related]
4. Self-assembly, DNA binding and cytotoxicity trends of ether functionalized gemini pyridinium amphiphiles. Chauhan V; Singh S; Kamboj R; Mishra R; Kaur G J Colloid Interface Sci; 2014 Mar; 417():385-95. PubMed ID: 24407701 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, surface properties and antimicrobial performance of novel gemini pyridinium surfactants. Hao J; Qin T; Zhang Y; Li Y; Zhang Y Colloids Surf B Biointerfaces; 2019 Sep; 181():814-821. PubMed ID: 31247406 [TBL] [Abstract][Full Text] [Related]
6. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers. Donkuru M; Michel D; Awad H; Katselis G; El-Aneed A J Chromatogr A; 2016 May; 1446():114-24. PubMed ID: 27086283 [TBL] [Abstract][Full Text] [Related]
7. Efficient and synergetic DNA delivery with pyridinium amphiphiles-gold nanoparticle composite systems having different packing parameters. Kizewski A; Ilies MA Chem Commun (Camb); 2016 Jan; 52(1):60-3. PubMed ID: 26553432 [TBL] [Abstract][Full Text] [Related]
8. Amphiphilic gemini pyridinium-mediated incorporation of Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin into water-soluble gold nanoparticles for photodynamic therapy. Alea-Reyes ME; Soriano J; Mora-Espí I; Rodrigues M; Russell DA; Barrios L; Pérez-García L Colloids Surf B Biointerfaces; 2017 Oct; 158():602-609. PubMed ID: 28755557 [TBL] [Abstract][Full Text] [Related]
9. Interfacial engineering of pyridinium gemini surfactants for the generation of synthetic transfection systems. Sharma VD; Aifuwa EO; Heiney PA; Ilies MA Biomaterials; 2013 Sep; 34(28):6906-21. PubMed ID: 23768782 [TBL] [Abstract][Full Text] [Related]
10. Macrocyclic imidazolium-based amphiphiles for the synthesis of gold nanoparticles and delivery of anionic drugs. Amirthalingam E; Rodrigues M; Casal-Dujat L; Calpena AC; Amabilino DB; Ramos-López D; Pérez-García L J Colloid Interface Sci; 2015 Jan; 437():132-139. PubMed ID: 25313476 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of Two Anionic Gemini Surfactants and Their Self-Assembly Induced by the Complexation of Calixpyridinium. Wang K; Dou HX; Wang MM; Xing SY; Wang XY Langmuir; 2018 Jul; 34(27):8052-8057. PubMed ID: 29906388 [TBL] [Abstract][Full Text] [Related]
12. Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study. Venkatpurwar V; Shiras A; Pokharkar V Int J Pharm; 2011 May; 409(1-2):314-20. PubMed ID: 21376108 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and crystal structures of gold nanowires with Gemini surfactants as directing agents. Xu F; Hou H; Gao Z Chemphyschem; 2014 Dec; 15(18):3979-86. PubMed ID: 25257473 [TBL] [Abstract][Full Text] [Related]
14. A novel modified chitosan/collagen coated-gold nanoparticles for 5-fluorouracil delivery: Synthesis, characterization, in vitro drug release studies, anti-inflammatory activity and in vitro cytotoxicity assay. Hongsa N; Thinbanmai T; Luesakul U; Sansanaphongpricha K; Muangsin N Carbohydr Polym; 2022 Feb; 277():118858. PubMed ID: 34893265 [TBL] [Abstract][Full Text] [Related]
15. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Singh DK; Jagannathan R; Khandelwal P; Abraham PM; Poddar P Nanoscale; 2013 Mar; 5(5):1882-93. PubMed ID: 23348618 [TBL] [Abstract][Full Text] [Related]
16. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis. Singh S; Vidyarthi AS; Nigam VK; Dev A Artif Cells Nanomed Biotechnol; 2014 Feb; 42(1):6-12. PubMed ID: 23438180 [TBL] [Abstract][Full Text] [Related]
17. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis. Li X; Wang Z; Li Y; Bian K; Yin T; Gao D Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():310-316. PubMed ID: 29025663 [TBL] [Abstract][Full Text] [Related]
18. Site-Selective Nucleation and Size Control of Gold Nanoparticle Photothermal Antennae on the Pore Structures of a Virus. Benjamin CE; Chen Z; Kang P; Wilson BA; Li N; Nielsen SO; Qin Z; Gassensmith JJ J Am Chem Soc; 2018 Dec; 140(49):17226-17233. PubMed ID: 30452248 [TBL] [Abstract][Full Text] [Related]
19. In situ template synthesis of gold nanoparticles using a bis-imidazolium amphiphile-based hydrogel. Rodrigues M; Genç A; Arbiol J; Amabilino DB; Pérez-García L J Colloid Interface Sci; 2015 May; 446():53-8. PubMed ID: 25656559 [TBL] [Abstract][Full Text] [Related]
20. In situ non-DLVO stabilization of surfactant-free, plasmonic gold nanoparticles: effect of Hofmeister's anions. Merk V; Rehbock C; Becker F; Hagemann U; Nienhaus H; Barcikowski S Langmuir; 2014 Apr; 30(15):4213-22. PubMed ID: 24720469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]