These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28482227)

  • 1. Probabilistic lower bounds for approximation by shallow perceptron networks.
    Kůrková V; Sanguineti M
    Neural Netw; 2017 Jul; 91():34-41. PubMed ID: 28482227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification by Sparse Neural Networks.
    Kurkova V; Sanguineti M
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2746-2754. PubMed ID: 30640635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimization of error functionals over perceptron networks.
    Kůrková V
    Neural Comput; 2008 Jan; 20(1):252-70. PubMed ID: 18045008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximation of classifiers by deep perceptron networks.
    Kůrková V; Sanguineti M
    Neural Netw; 2023 Aug; 165():654-661. PubMed ID: 37364474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integral upper bound for neural network approximation.
    Kainen PC; Kůrková V
    Neural Comput; 2009 Oct; 21(10):2970-89. PubMed ID: 19635020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimension independent bounds for general shallow networks.
    Mhaskar HN
    Neural Netw; 2020 Mar; 123():142-152. PubMed ID: 31869651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error bounds for approximations with deep ReLU networks.
    Yarotsky D
    Neural Netw; 2017 Oct; 94():103-114. PubMed ID: 28756334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can dictionary-based computational models outperform the best linear ones?
    Gnecco G; Kůrková V; Sanguineti M
    Neural Netw; 2011 Oct; 24(8):881-7. PubMed ID: 21704495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The capacity of feedforward neural networks.
    Baldi P; Vershynin R
    Neural Netw; 2019 Aug; 116():288-311. PubMed ID: 31125915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer perceptrons: approximation order and necessary number of hidden units.
    Trenn S
    IEEE Trans Neural Netw; 2008 May; 19(5):836-44. PubMed ID: 18467212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representations and rates of approximation of real-valued Boolean functions by neural networks.
    Kůrková V; Savický P; Hlavácková K
    Neural Netw; 1998 Jun; 11(4):651-659. PubMed ID: 12662803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some comparisons of complexity in dictionary-based and linear computational models.
    Gnecco G; Kůrková V; Sanguineti M
    Neural Netw; 2011 Mar; 24(2):171-82. PubMed ID: 21094023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Best approximation by Heaviside perceptron networks.
    Kainen P; Kůrková V; Vogt A
    Neural Netw; 2000 Sep; 13(7):695-7. PubMed ID: 11152201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer perceptrons to approximate complex valued functions.
    Arena P; Fortuna L; Re R; Xibilia MG
    Int J Neural Syst; 1995 Dec; 6(4):435-46. PubMed ID: 8963472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations of shallow nets approximation.
    Lin SB
    Neural Netw; 2017 Oct; 94():96-102. PubMed ID: 28755618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximation by fully complex multilayer perceptrons.
    Kim T; Adali T
    Neural Comput; 2003 Jul; 15(7):1641-66. PubMed ID: 12816570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexity estimates based on integral transforms induced by computational units.
    Kůrková V
    Neural Netw; 2012 Sep; 33():160-7. PubMed ID: 22684117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specification of training sets and the number of hidden neurons for multilayer perceptrons.
    Camargo LS; Yoneyama T
    Neural Comput; 2001 Dec; 13(12):2673-80. PubMed ID: 11705406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the complexity of computing and learning with multiplicative neural networks.
    Schmitt M
    Neural Comput; 2002 Feb; 14(2):241-301. PubMed ID: 11802913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.