BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28482297)

  • 1. Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products.
    Hu K; Awange JL; Khandu ; Forootan E; Goncalves RM; Fleming K
    Sci Total Environ; 2017 Dec; 599-600():372-386. PubMed ID: 28482297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992-2016.
    Khaki M; Awange J; Forootan E; Kuhn M
    Sci Total Environ; 2018 Dec; 645():1509-1521. PubMed ID: 30248872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of deep aquifers to climate variability.
    Abdelmohsen K; Sultan M; Ahmed M; Save H; Elkaliouby B; Emil M; Yan E; Abotalib AZ; Krishnamurthy RV; Abdelmalik K
    Sci Total Environ; 2019 Aug; 677():530-544. PubMed ID: 31067476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of multi-mission satellite data assimilation for studying water storage changes over South America.
    Khaki M; Awange J
    Sci Total Environ; 2019 Jan; 647():1557-1572. PubMed ID: 30180360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GRACE-derived groundwater changes over Greater Horn of Africa: Temporal variability and the potential for irrigated agriculture.
    Agutu NO; Awange JL; Ndehedehe C; Kirimi F; Kuhn M
    Sci Total Environ; 2019 Nov; 693():133467. PubMed ID: 31634997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data.
    Jiao JJ; Zhang X; Liu Y; Kuang X
    PLoS One; 2015; 10(10):e0141442. PubMed ID: 26506230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of groundwater storage changes over losing and gaining aquifers of China using GRACE satellites, modeling and in-situ observations.
    Yang J; Pan Y; Zhang C; Gong H; Xu L; Huang Z; Lu S
    Sci Total Environ; 2024 Aug; 938():173514. PubMed ID: 38802015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products.
    Ferreira VG; Yong B; Tourian MJ; Ndehedehe CE; Shen Z; Seitz K; Dannouf R
    Sci Total Environ; 2020 May; 718():137354. PubMed ID: 32325611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins.
    He Q; Fok HS; Chen Q; Chun KP
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of the spatio-temporal variability and storage potential of groundwater in data-deficient regions through groundwater models and inversion of impact factors on groundwater, as exemplified by the Lake Victoria Basin.
    Hu KX; Awange JL; Kuhn M; Nanteza J
    Sci Total Environ; 2021 Dec; 800():149355. PubMed ID: 34399330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Groundwater Monitoring Using GRACE and GLDAS Data after Downscaling Within Basaltic Aquifer System.
    Verma K; Katpatal YB
    Ground Water; 2020 Jan; 58(1):143-151. PubMed ID: 31359409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Climate-Induced Groundwater Depletion in GRACE Observations.
    Thomas BF; Famiglietti JS
    Sci Rep; 2019 Mar; 9(1):4124. PubMed ID: 30858389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable and resilient management scenarios for groundwater resources of the Red Sea coastal aquifers.
    Niyazi BA; Ahmed M; Masoud MZ; Rashed MA; Basahi JM
    Sci Total Environ; 2019 Nov; 690():1310-1320. PubMed ID: 31470493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Satellite-based estimates of groundwater storage depletion over Egypt.
    Shalby A; Emara SR; Metwally MI; Armanuos AM; El-Agha DE; Negm AM; Gado TA
    Environ Monit Assess; 2023 Apr; 195(5):594. PubMed ID: 37079099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating groundwater resources trends through multiple conceptual models and GRACE satellite data.
    Yidana SM; Dzikunoo EA; Mejida RA; Ackom EK; Chegbeleh LP; Loh YSA; Banoeng-Yakubo BK; Akabzaa TM
    Environ Monit Assess; 2024 Feb; 196(3):290. PubMed ID: 38383814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.
    Castellazzi P; Martel R; Galloway DL; Longuevergne L; Rivera A
    Ground Water; 2016 Nov; 54(6):768-780. PubMed ID: 27576068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotopic characterisation and dating of groundwater recharge mechanisms in crystalline fractured aquifers: example of the semi-arid Banabuiú watershed (Brazil).
    Kreis M; Taupin JD; Patris N; Martins ESPR
    Isotopes Environ Health Stud; 2020; 56(5-6):418-430. PubMed ID: 32744875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring groundwater storage in a fractured volcanic aquifer system.
    Melati MD; Athayde GB; Fan FM; Garcia LH; de Vasconcelos Muller Athayde C
    Environ Monit Assess; 2023 Feb; 195(3):385. PubMed ID: 36763308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015.
    Yang P; Xia J; Zhan C; Qiao Y; Wang Y
    Sci Total Environ; 2017 Oct; 595():218-228. PubMed ID: 28384578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater recharge estimation using in-situ and GRACE observations in the eastern region of the United Arab Emirates.
    Alghafli K; Shi X; Sloan W; Shamsudduha M; Tang Q; Sefelnasr A; Ebraheem AA
    Sci Total Environ; 2023 Apr; 867():161489. PubMed ID: 36634784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.