These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 28482550)

  • 1. Fatigue crack propagation in additively manufactured porous biomaterials.
    Hedayati R; Amin Yavari S; Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():457-463. PubMed ID: 28482550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron-manganese scaffolds.
    Putra NE; Moosabeiki V; Leeflang MA; Zhou J; Zadpoor AA
    Acta Biomater; 2024 Apr; 178():340-351. PubMed ID: 38395100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue Crack Growth Rates and Crack Tip Opening Loads in CT Specimens Made of SDSS and Manufactured Using WAAM.
    Sales A; Khanna A; Hughes J; Yin L; Kotousov A
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additively manufactured lattice structures with controlled transverse isotropy for orthopedic porous implants.
    Alaña M; Lopez-Arancibia A; Ghouse S; Rodriguez-Florez N; Ruiz de Galarreta S
    Comput Biol Med; 2022 Nov; 150():105761. PubMed ID: 36126355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static Compressive Behavior and Failure Mechanism of Tantalum Scaffolds with Optimized Periodic Lattice Fabricated by Laser-Based Additive Manufacturing.
    Gao H; Yang J; Jin X; Zhang D; Zhang S; Zhang F; Chen H
    3D Print Addit Manuf; 2023 Oct; 10(5):887-904. PubMed ID: 37886405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review.
    Kiselevskiy MV; Anisimova NY; Kapustin AV; Ryzhkin AA; Kuznetsova DN; Polyakova VV; Enikeev NA
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Macroporosity of Additively Manufactured Titanium Metamaterials for Bone Regeneration with Quality by Design: A Systematic Literature Review.
    Martinez-Marquez D; Delmar Y; Sun S; Stewart RA
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33121025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic Propagation of Fatigue Cracks in Welded Joints of Steel Bridge Decks under Simulated Traffic Loading.
    Lu N; Liu J; Wang H; Yuan H; Luo Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue behavior of additively manufactured Ti3Al2V alloy.
    Bandyopadhyay A; Ciliveri S; Guariento S; Zuckschwerdt N; Hogg WW
    Mater Sci Addit Manuf; 2023 Sep; 2(3):. PubMed ID: 38174053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Defect Evolution in EBM Additively Manufactured Ti-6Al-4V via In Situ Investigations.
    Sun W; Li M; Li H
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel.
    Voloskov B; Evlashin S; Dagesyan S; Abaimov S; Akhatov I; Sergeichev I
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Crack Propagation of 51CrV4 Steels for Leaf Spring Suspensions of Railway Freight Wagons.
    Gomes VMG; Lesiuk G; Correia JAFO; de Jesus AMP
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Fatigue Crack Initiation and the Propagation Mechanism Induced by Pores in a Powder Metallurgy Nickel-Based FGH96 Superalloy.
    Yi S; Zhang S; Wang D; Mao J; Zhang Z; Hu D
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling of damage mechanism for additively manufactured alloys at very high cycle fatigue.
    Voloskov BS; Bannikov MV; Bayandin YV; Naimark OB; Sergeichev IV
    Sci Rep; 2024 May; 14(1):10915. PubMed ID: 38740798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-based method for fatigue failure prediction of additively manufactured lattice structures.
    Coluccia A; De Pasquale G
    Sci Rep; 2023 Dec; 13(1):22775. PubMed ID: 38123617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-dependent effects of gamma radiation sterilization on the collagen matrix of human cortical bone allograft and its influence on fatigue crack propagation resistance.
    Crocker DB; Hering TM; Akkus O; Oest ME; Rimnac CM
    Cell Tissue Bank; 2024 May; ():. PubMed ID: 38750214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Considerations on the Failure Mechanisms at Fatigue Loading of 1018 Steel Samples Coated with Wip-C1 by Cold Spray.
    Alkisswani L; Goanță V; Munteanu C; Samara F; Cosau RE; Istrate B
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damage-Accumulation-Induced Crack Propagation and Fatigue Life Analysis of a Porous LY12 Aluminum Alloy Plate.
    Lv C; Wang K; Zhao X; Wang F
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Crack Width in Alternating Tension-Compression Regimes on Crack-Bridging Behaviour and Degradation of PVA Microfibres Embedded in Cement-Based Matrix.
    Ranjbarian M; Ma X; Mechtcherine V
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32967197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Porosity on Fatigue Behaviour of 18Ni300 Steel SLM CT Specimens at Various Angles.
    Cerezo PM; Aguilera JA; Garcia-Gonzalez A; Lopez-Crespo P
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.