BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28482622)

  • 41. Cutaneous microcirculation of diabetic foot: combined isolated cold stress testing and laser Doppler flowmetry study.
    Chen YJ; Wang CL; Lo SK
    J Formos Med Assoc; 1997 Aug; 96(8):606-12. PubMed ID: 9290270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impairment of the postural venoarteriolar response in young type 1 diabetic patients. A study by laser doppler flowmetry.
    Yosipovitch G; Schneiderman J; van Dyk DJ; Chetrit A; Milo G; Boner G
    Angiology; 1996 Jul; 47(7):687-91. PubMed ID: 8686963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients.
    Rayman G; Malik RA; Sharma AK; Day JL
    Clin Sci (Lond); 1995 Nov; 89(5):467-74. PubMed ID: 8549060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hypoxia of diabetic feet with abnormal arterial blood flow.
    Vogelberg KH; König M
    Clin Investig; 1993 Jun; 71(6):466-70. PubMed ID: 8353406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization.
    Arora S; Pomposelli F; LoGerfo FW; Veves A
    J Vasc Surg; 2002 Mar; 35(3):501-5. PubMed ID: 11877698
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Paradoxical transcutaneous oxygen response to cutaneous warming on the plantar foot surface: a caution for interpretation of plantar foot TcPO2 measurements.
    Smith DG; Boyko EJ; Ahroni JH; Stensel VL; Davignon DR; Pecoraro RE
    Foot Ankle Int; 1995 Dec; 16(12):787-91. PubMed ID: 8749350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics.
    Ruth B; Schmand J; Abendroth D
    Lasers Surg Med; 1993; 13(2):179-88. PubMed ID: 8464303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microvascular dysfunction in the context of diabetic neuropathy.
    Stirban A
    Curr Diab Rep; 2014; 14(11):541. PubMed ID: 25189434
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diabetes impairs sciatic nerve hyperemia induced by surgical trauma: implications for diabetic neuropathy.
    Ido Y; Chang K; LeJeune W; Tilton RG; Monafo WW; Williamson JR
    Am J Physiol; 1997 Jul; 273(1 Pt 1):E174-84. PubMed ID: 9252494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relationship between peripheral diabetic neuropathy and microvascular reactivity in patients with type 1 and type 2 diabetes mellitus -- neuropathy and microcirculation in diabetes.
    Kasalová Z; Prázný M; Skrha J
    Exp Clin Endocrinol Diabetes; 2006 Feb; 114(2):52-7. PubMed ID: 16570233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of different accumulated pressure-time integral stimuli on plantar blood flow in people with diabetes mellitus.
    Duan Y; Ren W; Xu L; Ye W; Jan YK; Pu F
    BMC Musculoskelet Disord; 2021 Jun; 22(1):554. PubMed ID: 34144680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using reactive hyperemia to investigate the effect of cupping sizes of cupping therapy on skin blood flow responses.
    He X; Zhang X; Liao F; He L; Xu X; Jan YK
    J Back Musculoskelet Rehabil; 2021; 34(2):327-333. PubMed ID: 33459698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduced hyperaemia following skin trauma: evidence for an impaired microvascular response to injury in the diabetic foot.
    Walmsley D; Wales JK; Wiles PG
    Diabetologia; 1989 Oct; 32(10):736-9. PubMed ID: 2591641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure.
    Fernando M; Crowther R; Lazzarini P; Sangla K; Cunningham M; Buttner P; Golledge J
    Clin Biomech (Bristol, Avon); 2013 Oct; 28(8):831-45. PubMed ID: 24035444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time-amplitude analysis of skin blood flow oscillations during the post-occlusive reactive hyperemia in human.
    Tikhonova IV; Tankanag AV; Chemeris NK
    Microvasc Res; 2010 Jul; 80(1):58-64. PubMed ID: 20346365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vascular assessment in the neuropathic diabetic foot.
    Chew JT; Tan SB; Sivathasan C; Pavanni R; Tan SK
    Clin Orthop Relat Res; 1995 Nov; (320):95-100. PubMed ID: 7586848
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Study of foot plantar pressure in Chinese diabetic patients].
    Xiao HS; Yan L; Chen LH; Yang C; Zhang SL; Wang YH; Cheng H
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(26):1825-7. PubMed ID: 17922991
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impaired skin microvascular reactivity in painful diabetic neuropathy.
    Quattrini C; Harris ND; Malik RA; Tesfaye S
    Diabetes Care; 2007 Mar; 30(3):655-9. PubMed ID: 17327336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lower limb biomechanical characteristics of patients with neuropathic diabetic foot ulcers: the diabetes foot ulcer study protocol.
    Fernando ME; Crowther RG; Cunningham M; Lazzarini PA; Sangla KS; Golledge J
    BMC Endocr Disord; 2015 Oct; 15():59. PubMed ID: 26499881
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modelling of thermal hyperemia in the skin of type 2 diabetic patients.
    Bandini A; Orlandi S; Manfredi C; Evangelisti A; Barrella M; Bevilacqua M; Bocchi L
    J Healthc Eng; 2013; 4(4):541-54. PubMed ID: 24287431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.