These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 28482654)
1. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils. Navarro JRG; Edlund U Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654 [TBL] [Abstract][Full Text] [Related]
2. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268 [TBL] [Abstract][Full Text] [Related]
4. Admicellar Polymerization Coating of CNF Enhances Integration in Degradable Nanocomposites. Edlund U; Lagerberg T; Ålander E Biomacromolecules; 2019 Feb; 20(2):684-692. PubMed ID: 30301347 [TBL] [Abstract][Full Text] [Related]
5. All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers. Kaldéus T; Telaretti Leggieri MR; Cobo Sanchez C; Malmström E Biomacromolecules; 2019 May; 20(5):1937-1943. PubMed ID: 30889349 [TBL] [Abstract][Full Text] [Related]
6. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites. Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560 [TBL] [Abstract][Full Text] [Related]
7. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels. Mulyadi A; Zhang Z; Deng Y ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377 [TBL] [Abstract][Full Text] [Related]
9. Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing. Navarro JR; Wennmalm S; Godfrey J; Breitholtz M; Edlund U Biomacromolecules; 2016 Mar; 17(3):1101-9. PubMed ID: 26789648 [TBL] [Abstract][Full Text] [Related]
10. Surface-Initiated Controlled Radical Polymerization Approach to In Situ Cross-Link Cellulose Nanofibrils with Inorganic Nanoparticles. Navarro JRG; Rostami J; Ahlinder A; Mietner JB; Bernin D; Saake B; Edlund U Biomacromolecules; 2020 May; 21(5):1952-1961. PubMed ID: 32223221 [TBL] [Abstract][Full Text] [Related]
11. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers. Carrillo CA; Nypelö T; Rojas OJ Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673 [TBL] [Abstract][Full Text] [Related]
12. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Peng XW; Ren JL; Zhong LX; Sun RC Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695 [TBL] [Abstract][Full Text] [Related]
13. Facile Route to Transparent, Strong, and Thermally Stable Nanocellulose/Polymer Nanocomposites from an Aqueous Pickering Emulsion. Fujisawa S; Togawa E; Kuroda K Biomacromolecules; 2017 Jan; 18(1):266-271. PubMed ID: 27958712 [TBL] [Abstract][Full Text] [Related]
14. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement. Li S; Xiao M; Zheng A; Xiao H Biomacromolecules; 2011 Sep; 12(9):3305-12. PubMed ID: 21797219 [TBL] [Abstract][Full Text] [Related]
15. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970 [TBL] [Abstract][Full Text] [Related]
16. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660 [TBL] [Abstract][Full Text] [Related]
17. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Lu Y; Cueva MC; Lara-Curzio E; Ozcan S Carbohydr Polym; 2015 Oct; 131():208-17. PubMed ID: 26256177 [TBL] [Abstract][Full Text] [Related]
18. Synergistic reinforcing and cross-linking effect of thiol-ene-modified cellulose nanofibrils on natural rubber. Zhu G; Dufresne A Carbohydr Polym; 2022 Feb; 278():118954. PubMed ID: 34973770 [TBL] [Abstract][Full Text] [Related]
19. High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers. Prakobna K; Galland S; Berglund LA Biomacromolecules; 2015 Mar; 16(3):904-12. PubMed ID: 25650787 [TBL] [Abstract][Full Text] [Related]
20. Bioactive cellulose nanofibrils for specific human IgG binding. Zhang Y; Carbonell RG; Rojas OJ Biomacromolecules; 2013 Dec; 14(12):4161-8. PubMed ID: 24131287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]